Pathologically validated deep learning model for laryngeal and hypopharyngeal GTV delineation on MRI

被引:0
|
作者
Kuijer, Koen M. [1 ,2 ]
Smits, Hilde J. G. [1 ]
Doornaert, Patricia A. H. [1 ]
Niu, Kenan [3 ]
Smid, Ernst J. [1 ]
Terhaard, Chris H. J. [1 ]
de Ridder, Mischa [1 ]
Philippens, Marielle E. P. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiotherapy, Utrecht, Netherlands
[2] Univ Twente, Tech Med, Enschede, Netherlands
[3] Univ Twente, Robot & Mechatron Grp, Fac Elect Engn Math & Comp Sci, Enschede, Netherlands
关键词
Laryngeal and hypopharyngeal GTV; MRI; pathology;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2411
引用
收藏
页码:S3102 / S3104
页数:3
相关论文
共 50 条
  • [41] Improved delineation model of a standard 12-lead electrocardiogram based on a deep learning algorithm
    Annisa Darmawahyuni
    Siti Nurmaini
    Muhammad Naufal Rachmatullah
    Prazna Paramitha Avi
    Samuel Benedict Putra Teguh
    Ade Iriani Sapitri
    Bambang Tutuko
    Firdaus Firdaus
    BMC Medical Informatics and Decision Making, 23
  • [42] Improved delineation model of a standard 12-lead electrocardiogram based on a deep learning algorithm
    Darmawahyuni, Annisa
    Nurmaini, Siti
    Rachmatullah, Muhammad Naufal
    Avi, Prazna Paramitha
    Teguh, Samuel Benedict Putra
    Sapitri, Ade Iriani
    Tutuko, Bambang
    Firdaus, Firdaus
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [43] A deep learning model for diagnosing dystrophinopathies on thigh muscle MRI images
    Yang, Mei
    Zheng, Yiming
    Xie, Zhiying
    Wang, Zhaoxia
    Xiao, Jiangxi
    Zhang, Jue
    Yuan, Yun
    BMC NEUROLOGY, 2021, 21 (01)
  • [44] A deep learning model for diagnosing dystrophinopathies on thigh muscle MRI images
    Mei Yang
    Yiming Zheng
    Zhiying Xie
    Zhaoxia Wang
    Jiangxi Xiao
    Jue Zhang
    Yun Yuan
    BMC Neurology, 21
  • [45] Deep Learning for the Intravoxel Incoherent Motion Model of DW-MRI
    You, D.
    Cao, Y.
    MEDICAL PHYSICS, 2019, 46 (06) : E439 - E439
  • [46] Externally validated deep learning model to identify prodromal Parkinson's disease from electrocardiogram
    Karabayir, Ibrahim
    Gunturkun, Fatma
    Butler, Liam
    Goldman, Samuel M.
    Kamaleswaran, Rishikesan
    Davis, Robert L.
    Colletta, Kalea
    Chinthala, Lokesh
    Jefferies, John L.
    Bobay, Kathleen
    Ross, G. Webster
    Petrovitch, Helen
    Masaki, Kamal
    Tanner, Caroline M.
    Akbilgic, Oguz
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [47] ECG-AI: AN EXTERNALLY VALIDATED DEEP LEARNING MODEL TO PREDICT HEART FAILURE RISK
    Akbilgic, Oguz
    Butler, Liam
    Karabayir, Ibrahim
    Kitzman, Dalane W.
    Clifford, Gari
    Chen, Lin Yee
    Alonso, Alvaro
    Chang, Patricia P.
    Soliman, Elsayed Z.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 328 - 328
  • [48] Externally validated deep learning model to identify prodromal Parkinson’s disease from electrocardiogram
    Ibrahim Karabayir
    Fatma Gunturkun
    Liam Butler
    Samuel M. Goldman
    Rishikesan Kamaleswaran
    Robert L. Davis
    Kalea Colletta
    Lokesh Chinthala
    John L. Jefferies
    Kathleen Bobay
    G. Webster Ross
    Helen Petrovitch
    Kamal Masaki
    Caroline M. Tanner
    Oguz Akbilgic
    Scientific Reports, 13
  • [49] Externally Validated Deep Learning Model for Patent Ductus Arteriosus Detection by Echocardiography in Preterm Infants
    Gearhart, Addison
    Elrod, Micaela
    Gomes, Thomas
    Golbus, Alexa
    Baltimore, Christopher
    Wakser, Cayla
    Graham, Jason
    Lai, Wyman
    Powell, Andrew
    Smith, Dane
    Baker, George
    CIRCULATION, 2024, 150
  • [50] Development and Benchmarking of a Deep Learning/UNet-based Algorithm for automatic MRI-assisted GTV Segmentation of Soft-tissue Sarcomas of the Extremities
    Etzel, L.
    Navarro, F.
    Tomov, T.
    Muench, S.
    Schuettrumpf, L.
    Shakhtour, J.
    Knebel, C.
    Schaub, S. K.
    Mayr, N. A.
    Woodruff, H. C.
    Lambin, P.
    Gersing, A. S.
    Bernhardt, D.
    Nyflot, M. J.
    Menze, B.
    Combs, S.
    Peeken, J.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2022, 198 (SUPPL 1) : S66 - S66