Reactivity and stability of different pyrites as sulfur carriers for chemical looping decomposition of H2S into H2 and S

被引:1
|
作者
Wang, Peng [1 ]
Zhou, Shanshan [1 ]
Ma, Shiwei [1 ]
Shen, Laihong [2 ]
Song, Tao [1 ]
机构
[1] Nanjing Normal Univ, Sch Energy & Mech Engn, Nanjing 210042, Peoples R China
[2] Southeast Univ, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemical looping; Hydrogen; Sulfur; Sulfur carrier; Hydrogen sulfide; Pyrite; HYDROGEN-SULFIDE; THERMAL-DECOMPOSITION; CONVERSION; CO2;
D O I
10.1016/j.seppur.2025.131792
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Direct decomposition of H2S into H2 and S offers an attractive approach for the simultaneous recovery of H2 and S from an abundant and toxic waste gas. However, it still encounters challenges related to the thermal equilibrium limitations. Chemical looping decomposition of H2S into H2 and S presents a promising alternative, utilizing metal sulfides as sulfur carriers. This approach decouples the direct H2S decomposition into two-step reactions as the decomposition of sulfur carrier for S production and the sulfurization for H2 production, effectively overcoming the inherent thermodynamic constraints. Natural pyrite, a widely available mineral primarily composed of FeS2, is a potential candidate as the sulfur carrier. In this study, two low-cost pyrites were explored as sulfur carriers in the chemical looping decomposition of H2S. The decomposition, sulfurization and cyclic performance of different pyrites were experimentally investigated. During the decomposition process, pyrite converts into the FeS phase, releasing elemental sulfur gases and resulting in a more porous structure. Higher temperatures can promote pyrite decomposition and enhance sulfur production. During the sulfidation process, the influence of temperature is much stronger than the type of pyrite sulfur carriers on H2S conversion. Increasing sulfidation temperature significantly enhances H2S conversion, while higher H2S concentrations result in a decrease in H2S conversion. The sulfidation reactivity of pyrite sulfur carriers may be hindered by mass transfer resistance and mild kinetic activity. Additionally, both pyrite samples demonstrate stable performance during consecutive 20 cycle. Inert supports, such as SiO2 in natural pyrites, play a crucial role in maintaining structural stability and mechanical strength.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Microsensor for simultaneous measurement of H2 and H2S
    Maegaard, Karen
    Garcia-Robledo, Emilio
    Revsbech, Niels Peter
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 259 : 560 - 564
  • [22] Catalytic transformation of H2S for H2 production
    Burra, Kiran Raj G.
    Bassioni, Ghada
    Gupta, Ashwani K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (51) : 22852 - 22860
  • [23] H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma
    Quan-Zhi Zhang
    WeiZong Wang
    Christophe Thille
    Annemie Bogaerts
    Plasma Chemistry and Plasma Processing, 2020, 40 : 1163 - 1187
  • [24] INVESTIGATIONS OF HIGH-TEMPERATURE SULFIDIZATION OF STEELS IN H2/H2S AND H2/H2S/H2O GAS-MIXTURES
    GROSSER, W
    MEDER, D
    AUER, W
    KAESCHE, H
    WERKSTOFFE UND KORROSION-MATERIALS AND CORROSION, 1992, 43 (04): : 145 - 153
  • [25] Chemical Looping Selective Oxidation of H2S using V2O5 Impregnated over Different Supports as Oxygen Carriers
    Kane, Tanushree
    Caballero, Jesus Guerrero
    Lofberg, Axel
    CHEMCATCHEM, 2020, 12 (09) : 2569 - 2579
  • [26] Effects of H2S on the Reactivity of Ilmenite Ore as Chemical Looping Combustion Oxygen Carrier with Methane as Fuel
    Tan, Yewen
    Sun, Zhenkun
    Cabello, Arturo
    Lu, Dennis Y.
    Hughes, Robin W.
    ENERGY & FUELS, 2019, 33 (01) : 585 - 594
  • [27] High-Throughput Computational Screening of Metal Sulfides for the Chemical Looping Elemental Decomposition of H2S
    Tolstova, Polina
    Ahmad, Rafia
    Sepulveda, Adrian Cavazos
    Cavallo, Luigi
    SMALL, 2024, 20 (49)
  • [28] 由H2S催分解制H2和S
    丁宝桐
    无机盐工业, 1980, (02) : 61 - 61
  • [29] CHEMICAL DESULFURIZATION OF COAL - PARTITIONING SULFUR TO GAS AS H2S
    STENCEL, JM
    NEATHERY, JK
    YANG, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 207 : 90 - FUEL
  • [30] New analyzer monitors H2 and H2S simultaneously
    不详
    HYDROCARBON PROCESSING, 2003, 82 (10): : 29 - 29