Exploring Technologies for Semantic Metadata Enhancement

被引:0
|
作者
Azam, Sadia [1 ]
De Sanctis, Martina [1 ]
Di Salle, Amleto [1 ]
Iovino, Ludovico [1 ]
机构
[1] Gran Sasso Sci Inst, Laquila, Italy
关键词
Content Management Systems; Semantic Enrichment; Large Language Models;
D O I
10.1007/978-3-031-70011-8_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A seamless integration between Content Management Systems (CMS) and Semantic Metadata Repositories (SMR) could potentially trigger huge improvements in content personalization and recommendation systems via automatic enrichment of content by using external resources. In the past, tools such as Apache Stanbol has been used to provide the semantic capabilities to CMS. These semantic capabilities include extraction of text, content enhancement, linked data integration and content improvement. Despite its promising features, Apache Stanbol faced limitations such as complexity, integration challenges, and a dwindling support community, leading to its discontinuation in 2020. This paper discusses the shift towards leveraging Large Language Models (LLMs) for semantic enrichment of CMS. LLMs, with their advanced natural language understanding and generation capabilities, represent a dynamic, robust, and scalable alternative for semantic processing. This transition aims to overcome the challenges associated with previous technologies, harnessing the state-of-the-art advancements in LLMs to achieve improved content personalization, context-aware recommendations, and an enriched user experience. This evolution underscores the potential of LLMs to revolutionize content management, offering a forward-looking perspective on the application of semantic technologies.
引用
收藏
页码:459 / 469
页数:11
相关论文
共 50 条
  • [21] Format-independent and metadata-driven media resource adaptation using semantic web technologies
    Davy Van Deursen
    Wim Van Lancker
    Sarah De Bruyne
    Wesley De Neve
    Erik Mannens
    Rik Van de Walle
    Multimedia Systems, 2010, 16 : 85 - 104
  • [22] Format-independent and metadata-driven media resource adaptation using semantic web technologies
    Van Deursen, Davy
    Van Lancker, Wim
    De Bruyne, Sarah
    De Neve, Wesley
    Mannens, Erik
    Van de Walle, Rik
    MULTIMEDIA SYSTEMS, 2010, 16 (02) : 85 - 104
  • [23] CREAM: CREAting Metadata for the Semantic Web
    Handschuh, S
    Staab, S
    COMPUTER NETWORKS, 2003, 42 (05) : 579 - 598
  • [24] Utilizing user behaviors with semantic metadata
    Jiang, Lili
    Zhan, Jian
    Li, Lian
    Shi, Changxian
    An, Ning
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, 2008, : 1224 - 1225
  • [25] Towards an operative view of semantic metadata
    Froeschl, K.A.
    Statistical Journal of the United Nations Economic Commission for Europe, 1993, 10 (02):
  • [26] Metadata-Driven Semantic Coordination
    Fiorelli, Manuel
    Stellato, Armando
    Lorenzetti, Tiziano
    Schmitz, Peter
    Francesconi, Enrico
    Hajlaoui, Najeh
    Batouche, Brahim
    METADATA AND SEMANTIC RESEARCH, MTSR 2019, 2019, 1057 : 16 - 27
  • [27] Combining Reasoning on Semantic Web Metadata
    Bozzato, Loris
    Serafini, Luciano
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 979 - 980
  • [28] Semantic enabled metadata management in PetaShare
    Wang, Xinqi
    Huang, Dayong
    Akturk, Ismail
    Balman, Mehmet
    Allen, Gabrielle
    Kosar, Tevfik
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2009, 1 (04) : 275 - 286
  • [29] Workflow Matching Using Semantic Metadata
    Gil, Yolanda
    Kim, Jihie
    Florez, Gonzalo
    Ratnakar, Varun
    Gonzalez-Calero, Pedro A.
    K-CAP'09: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE, 2009, : 121 - 128
  • [30] A semantic metadata catalog service for grid
    Wei, KW
    Zhang, M
    Zhu, YP
    GRID AND COOPERATIVE COMPUTING - GCC 2005, PROCEEDINGS, 2005, 3795 : 136 - 142