On weakly σ-semipermutable subgroups of finite groups

被引:0
|
作者
Wu, Xinwei [1 ]
Li, Xianhua [2 ]
机构
[1] Nanjing Tech Univ, Nanjing 211816, Peoples R China
[2] Guizhou Normal Univ, Guiyang 530001, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite group; Weakly sigma-semipermutable subgroup; sigma-subnormal subgroup; sigma-Hall subgroup; sigma-nilpotent group;
D O I
10.1007/s11587-025-00927-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2015, A.N.Skiba in [1] introduce definition: A subgroup H of G is said to be sigma-subnormal in G if there is a subgroup chain H = H-0 <= H-1 <= center dot center dot center dot <= H-t = G such that either Hi - 1 (sic) H-i or H-i/(Hi - 1)(Hi) is sigma-primary for all i = 1, . . . , t. Later, Wenbin Guo and A.N.Skiba in [2] introduce the definition of sigma-semipermutable: A subgroup H of G is said to be sigma-semipermutable in G if G possesses a complete Hall sigma-set H such that H A(x) = A(x) H for all A is an element of H and all x is an element of G such that sigma (A) boolean AND sigma (H) = empty set. In this paper, we present a new generalized supplemented definition: A subgroup H of G is said to be: weakly sigma-semipermutable in G if there exists a sigma-subnormal subgroup T of G such that G = HT and H boolean AND T <= H-sigma G, where H-sigma G is the subgroup of H generated by all those subgroups of H which are sigma-semipermutable in G. Also, the structure of a finite group with some weakly sigma-semipermutable subgroups is investigated.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A criterion of p-nilpotency of finite groups with some weakly s-semipermutable subgroups
    Zhang, Xinjian
    Xu, Yong
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 223 - 229
  • [32] A note on S-semipermutable subgroups of finite groups
    Yu, Haoran
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 : 257 - 263
  • [33] Weakly S-semipermutable subgroups and p-nilpotency of groups
    Dehkordy, Hassan Jafarian
    Rezaeezadeh, Gholamreza R.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2023, 150 : 137 - 148
  • [34] Characterizations of Finite Groups with X-s-semipermutable Subgroups
    Li, Jinbao
    Yu, Dapeng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (03) : 849 - 859
  • [35] c*-Normal and s-semipermutable subgroups in finite groups
    Zhong, Guo
    Liu, Huayu
    Li, Guixiong
    Jiang, Lianbi
    Luo, Junpei
    AFRIKA MATEMATIKA, 2016, 27 (1-2) : 115 - 120
  • [36] THE INFLUENCE OF s-SEMIPERMUTABLE SUBGROUPS ON THE STRUCTURE OF FINITE GROUPS
    Tang, Na
    Guo, Wenbin
    Kabanov, V. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2007, 13 (01): : 191 - 196
  • [37] The influence of s-semipermutable subgroups on the structure of finite groups
    Tang N.
    Guo W.
    Kabanov V.V.
    Proceedings of the Steklov Institute of Mathematics, 2007, 257 (Suppl 1) : S189 - S194
  • [38] Characterizations of Finite Groups with X-s-semipermutable Subgroups
    Jinbao Li
    Dapeng Yu
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 849 - 859
  • [39] On s-semipermutable subgroups of finite groups and p-nilpotency
    Zhangjia Han
    Proceedings - Mathematical Sciences, 2010, 120 : 141 - 148
  • [40] A result on s-semipermutable subgroups of finite groups and some applications
    Aseeri, Fawaz
    Kaspczyk, Julian
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (05) : 2176 - 2182