Research on thermal runaway propagation of lithium-ion batteries based on cold plate cooling and flame-retardant materials

被引:0
|
作者
Han, Xianjie [1 ,2 ]
Li, Chaoran [1 ,2 ]
Lyu, Peizhao [1 ,2 ]
Li, Menghan [1 ,2 ]
Wen, Chuang [3 ]
Rao, Zhonghao [1 ,2 ]
机构
[1] Hebei Univ Technol, Hebei Engn Res Ctr Adv Energy Storage Technol & Eq, Sch Energy & Environm Engn, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Sch Energy & Environm Engn, Hebei Key Lab Thermal Sci & Energy Clean Utilizat, Tianjin 300401, Peoples R China
[3] Univ Reading, Sch Built Environm, Reading RG6 6AH, England
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Thermal runaway propagation; Thermal management; Cold plate cooling; Flame-retardant materials; MANAGEMENT; PERFORMANCE; SAFETY; MODEL;
D O I
10.1016/j.est.2024.115271
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Battery cooling and thermal runaway propagation (TRP) inhibiting were crucial to the safe and efficient operation of lithium-ion batteries. Currently, the most frequently used methods for suppressing TRP in lithium-ion batteries can be classified into methods based on thermal insulation materials, phase change materials, and liquid cooling. However, suffering from low cooling efficiency and poor thermal insulation, these methods do not fundamentally ensure the safety of the battery system. In this paper, a cold plate-flame retardant plate-cold plate (CFCP) based inter-battery cooling system is proposed, which combines the good cooling performance of liquidcooled plates and the fireproof performance of flame-retardant materials, to inhibit the propagation of thermal runaway in batteries. Three typical structures of cooling runner and three typical flame-retardant materials, including glass wool, aerogel, and polyimide foam (PIF), are tested to achieve the optimum performance. The results demonstrate that the CFCP based cooling system could achieve better cooling performance compared to traditional bottom cold plate cooling systems; heat transfer from the thermal runaway cell to the neighboring cells could be effectively suppressed when flow rate is 0.05 m/s. Additionally, the CFCP cooling system based on aerogel and the cold plate with a five-vertical-channel cooling structure could achieve the best cooling effect.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Noncoordinating Flame-Retardant Functional Electrolyte Solvents for Rechargeable Lithium-Ion Batteries
    Tan, Shuang-Jie
    Tian, Yi-Fan
    Zhao, Yao
    Feng, Xi-Xi
    Zhang, Juan
    Zhang, Chao-Hui
    Fan, Min
    Guo, Jun-Chen
    Yin, Ya-Xia
    Wang, Fuyi
    Xin, Sen
    Guo, Yu-Guo
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, : 18240 - 18245
  • [22] Study on the effect of spacing on thermal runaway propagation for lithium-ion batteries
    Wang, Zhirong
    Mao, Ning
    Jiang, Fengwei
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 140 (06) : 2849 - 2863
  • [23] Study on the effect of spacing on thermal runaway propagation for lithium-ion batteries
    Zhirong Wang
    Ning Mao
    Fengwei Jiang
    Journal of Thermal Analysis and Calorimetry, 2020, 140 : 2849 - 2863
  • [24] Thermal Runaway Propagation Characteristics of Lithium-Ion Batteries with Different Cathode Materials: A Comparative Study
    Li, Yitong
    Wang, Huaibin
    Wang, Shilin
    Xu, Lejun
    Li, Yang
    Sun, Junli
    Gao, Yang
    FIRE TECHNOLOGY, 2025,
  • [25] Synergistic inhibition of thermal runaway propagation of lithium-ion batteries by porous materials and water mist
    Zhu, Yu
    Zhou, Yuxin
    Gao, Haipeng
    Wang, Zhirong
    Bai, Wei
    Ouyang, Dongxu
    Wang, Junling
    JOURNAL OF CLEANER PRODUCTION, 2023, 406
  • [26] Mitigating thermal runaway propagation for lithium-ion batteries by a novel integrated liquid cooling/aerogel strategies
    Lyu, Peizhao
    Chen, Guohe
    Liu, Xinjian
    Li, Menghan
    Rao, Zhonghao
    APPLIED THERMAL ENGINEERING, 2025, 269
  • [27] Cellulose-Derived Flame-Retardant Solid Polymer Electrolyte for Lithium-Ion Batteries
    Kale, Sayali B.
    Nirmale, Trupti C.
    Khupse, Nageshwar D.
    Kale, Bharat B.
    Kulkarni, Milind, V
    Pavitran, S.
    Gosavi, Suresh W.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (04) : 1559 - 1567
  • [28] Supramolecular "flame-retardant" electrolyte enables safe and stable cycling of lithium-ion batteries
    Chen, Xiaoxia
    Yan, Shuaishuai
    Tan, Tianhao
    Zhou, Pan
    Hou, Junxian
    Feng, Xuning
    Dong, Hao
    Wang, Peican
    Wang, Dong
    Wang, Baoguo
    Ouyang, Minggao
    Liu, Kai
    ENERGY STORAGE MATERIALS, 2022, 45 : 182 - 190
  • [29] Smart materials for safe lithium-ion batteries against thermal runaway
    Ou, Yu
    Zhou, Pan
    Hou, Wenhui
    Ma, Xiao
    Song, Xuan
    Yan, Shuaishuai
    Lu, Yang
    Liu, Kai
    JOURNAL OF ENERGY CHEMISTRY, 2024, 94 : 360 - 392
  • [30] Mitigating Thermal Runaway of Lithium-Ion Batteries
    Feng, Xuning
    Ren, Dongsheng
    He, Xiangming
    Ouyang, Minggao
    JOULE, 2020, 4 (04) : 743 - 770