An Edge Computing-Based Solution for Real-Time Leaf Disease Classification Using Thermal Imaging

被引:0
|
作者
da Silva, Publio Elon Correa [1 ]
Almeida, Jurandy [1 ]
机构
[1] Fed Univ Sao Carlos UFSCar, Dept Comp DCOMP So, Sorocaba, Brazil
基金
巴西圣保罗研究基金会;
关键词
Infrared imaging; neural network compression; real-time systems; remote sensing;
D O I
10.1109/LGRS.2024.3456637
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning (DL) technologies can transform agriculture by improving crop health monitoring and management, thus improving food safety. In this letter, we explore the potential of edge computing (EC) for real-time classification of leaf diseases using thermal imaging. We present a thermal image dataset for plant disease classification and evaluate DL models, including InceptionV3, MobileNetV1, MobileNetV2, and VGG-16, on resource-constrained devices like the Raspberry Pi 4B. Using pruning and quantization-aware training, these models achieve inference times up to 1.48x faster on Edge TPU Max for VGG16, and up to 2.13x faster with precision reduction on Intel NCS2 for MobileNetV1, compared with high-end GPUs like RTX 3090, while maintaining state-of-the-art accuracy.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A Real-Time UAV Target Detection Algorithm Based on Edge Computing
    Cheng, Qianqing
    Wang, Hongjun
    Zhu, Bin
    Shi, Yingchun
    Xie, Bo
    DRONES, 2023, 7 (02)
  • [32] Adaptive Replication for Real-Time Applications based on Mobile Edge Computing
    Hsu, Kuo-Shiang
    Chang, Wan-Chi
    Huang, Wei-Hsun
    Wang, Pi-Chung
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION, NETWORKS AND SATELLITE (COMNETSAT 2021), 2021, : 88 - 94
  • [33] Real-time Video Transmission Optimization Based on Edge Computing in IIoT
    Du, Lei
    Huo, Ru
    2021 IEEE 29TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP 2021), 2021,
  • [34] Real-time stress assessment using thermal imaging
    Kan Hong
    Sheng Hong
    The Visual Computer, 2016, 32 : 1369 - 1377
  • [35] Real-time stress assessment using thermal imaging
    Hong, Kan
    Hong, Sheng
    VISUAL COMPUTER, 2016, 32 (11): : 1369 - 1377
  • [36] Edge Computing for AI-Based Brain MRI Applications: A Critical Evaluation of Real-Time Classification and Segmentation
    Memon, Khuhed
    Yahya, Norashikin
    Yusoff, Mohd Zuki
    Remli, Rabani
    Mustapha, Aida-Widure Mustapha Mohd
    Hashim, Hilwati
    Ali, Syed Saad Azhar
    Siddiqui, Shahabuddin
    SENSORS, 2024, 24 (21)
  • [37] Real-time running workouts monitoring using Cloud-Edge computing
    Avram, Maria-Ruxandra
    Pop, Florin
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (19): : 13803 - 13822
  • [38] Privacy-preserving Real-time Anomaly Detection Using Edge Computing
    Mehnaz, Shagufta
    Bertino, Elisa
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 469 - 480
  • [39] Real-time quantum edge enhanced imaging
    Liu, Shi-Kai
    Li, Yin-Hai
    Liu, Shi-Long
    Zhou, Zhi-Yuan
    Li, Yan
    Yang, Chen
    Guo, Guang-Can
    Shi, Bao-Sen
    OPTICS EXPRESS, 2020, 28 (24): : 35415 - 35426
  • [40] Deep Learning-based Real-time Segmentation for Edge Computing Devices
    Kwak, Jaeho
    Yu, Hyunwoo
    Cho, Yubin
    Kang, Sukju
    Cho, Jaechan
    Park, Jun-Young
    Lee, Ji-Won
    2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022,