Enhanced photocurrent and responsivity of PbS quantum Dot/ZnO nanoparticle films with amine passivation

被引:0
|
作者
Chen, Po-Hsun [1 ]
Pham, Nguyet. N. T. [1 ,2 ]
Huang, Pei-Cheng [1 ]
Lin, Yu-Sian [1 ]
Peng, Chia-Tien [3 ]
Lin, Cheng-Hsing [3 ]
Chang, Chih-Ching [1 ]
Chen, Hsueh-Shih [1 ,4 ,5 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[2] Univ Sci Vietnam Natl Univ Ho Chi Minh City, Fac Chem, Ho Chi Minh City 70000, Vietnam
[3] AUO Corp, Hsinchu Sci Pk, Hsinchu, Taiwan
[4] Yuan Ze Univ, Coll Engn, Dept Chem Engn & Mat Sci, Taoyuan 32003, Taiwan
[5] Natl Tsing Hua Univ, Coll Semicond Res, Hsinchu 30013, Taiwan
来源
关键词
PBS; IR; Photodetection; Solar; Quantum dots; Sensing; TOTAL-ENERGY CALCULATIONS; PLUS U; ZNO; PERFORMANCE; DOTS;
D O I
10.1016/j.apsadv.2025.100705
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigated a combination of PbS quantum dots (QDs) and ZnO nanoparticles (NPs) layers in photodiodes for photodetection. Oxygen vacancies in ZnO NPs have been known to be recombination trap sites, hindering carrier transportation. We used various amines to passivate the oxygen vacancy of ZnO NPs. It is found that ethanolamine (EA) is the most effective in reducing the surface oxygen vacancies of ZnO, exhibiting a fivefold increase in electron mobility, enhancing PbS QD photodiode responsivity to 278.8 A/W and achieving an external quantum efficiency (EQE) of 36,700% under bias, and increasing the detectivity similar to 15.5 folds to 8.14 x 10(12) Jones compared with the pure ZnO device. This demonstrates the potential of amines as passivation agents to improve PbS photodiode performance with ZnO NPs as the electron transport layer (ETL).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The role of surface passivation for efficient and photostable PbS quantum dot solar cells
    Cao, Yiming
    Stavrinadis, Alexandros
    Lasanta, Tania
    So, David
    Konstantatos, Gerasimos
    NATURE ENERGY, 2016, 1
  • [22] Responsivity improvement in PbS colloidal quantum dot photoconductors using colloidal gold nanoparticles
    Heves, E.
    Ozturk, C.
    Gurbuz, Y.
    ELECTRONICS LETTERS, 2013, 49 (05) : 367 - 368
  • [23] The role of surface passivation for efficient and photostable PbS quantum dot solar cells
    Yiming Cao
    Alexandros Stavrinadis
    Tania Lasanta
    David So
    Gerasimos Konstantatos
    Nature Energy, 1 (4)
  • [24] Theoretical Study on the Photocurrent of a ZnO-based Quantum Dot Photodetector
    Li, M. K.
    Lee, S. J.
    Kang, T. W.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 55 (01) : 120 - 123
  • [25] Enhanced photocurrent readout for a quantum dot qubit by bias modulation
    Quilter, J. H.
    Coles, R. J.
    Ramsay, A. J.
    Fox, A. M.
    Skolnick, M. S.
    APPLIED PHYSICS LETTERS, 2013, 102 (18)
  • [26] Enhanced normal incidence photocurrent in quantum dot infrared photodetectors
    Shao, Jiayi
    Vandervelde, Thomas E.
    Barve, Ajit
    Jang, Woo-Yong
    Stintz, Andreas
    Krishna, Sanjay
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (03):
  • [27] Enhanced solar photocurrent using a quantum-dot molecule
    Lira, J.
    Villas-Boas, J. M.
    Sanz, L.
    Alcalde, A. M.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2022, 39 (08) : 2047 - 2055
  • [28] Configuration adjustment of ZnO/PbS quantum dot heterojunction solar cells
    Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education and Shanxi Province, National and Local Joint Engineering Research Center, Taiyuan University of Technology, Taiyuan, China
    不详
    不详
    Rengong Jingti Xuebao, 6 (1509-1515):
  • [29] Optimization of a ZnO/PbS Depleted Heterojunction Quantum Dot Photovoltaic Cell
    Philip, Matthew
    Cowern, Nick
    2014 INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2014, : 32 - 36
  • [30] Photocarrier Radiometry Characteristics of PbS Colloidal Quantum Dot Films
    Luo Donghui
    Wang Qian
    Zhao Zitao
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (09)