Force decomposition of vortex-plate interaction via dynamic mode decomposition

被引:0
|
作者
Yuan, Dehan [1 ,2 ]
Kang, Linlin [2 ]
Dai, Guangmin [1 ,2 ]
Ge, Mingming [2 ]
Fan, Dixia [2 ]
机构
[1] Zhejiang Univ, Sch Environm & Resource Sci, Hangzhou 310000, Zhejiang, Peoples R China
[2] Westlake Univ, Sch Engn, Key Lab Coastal Environm & Resources Zhejiang Prov, Hangzhou 310000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Vortex-body interaction; Vortex dynamics; Dynamic mode decomposition; Collective locomotion; TANDEM FLEXIBLE FLAGS; MECHANICS;
D O I
10.1016/j.oceaneng.2024.119757
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This study investigates the dynamics of two tandem flexible plates flapping in a uniform flow, focusing on how variations in their phase angle affect thrust generation. Considerable emphasis is given to the interactions between the wakes of the two plates and their subsequent effects on the performance of the rear plate. By applying Dynamic Mode Decomposition (DMD) alongside vortex dynamics analysis, the force exerted on the rear plate is quantitatively assessed in relation to the surrounding flow structures. The results show a decline in the rear plate's thrust when it enters a "locked vortex"state, primarily due to diminished leading-edge suction. The analysis also reveals a strong correlation between the dominant mode f* = 1 and the time-averaged forces, which aligns with the observed vortex-plate interaction patterns. Furthermore, the study demonstrates that the time-averaged horizontal force on the rear plate is largely influenced by low-frequency dominant modes, underscoring the importance of these interactions for optimizing propulsion systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A characteristic dynamic mode decomposition
    Jörn Sesterhenn
    Amir Shahirpour
    Theoretical and Computational Fluid Dynamics, 2019, 33 : 281 - 305
  • [22] Dynamic mode decomposition with memory
    Anzaki, Ryoji
    Sano, Kei
    Tsutsui, Takuro
    Kazui, Masato
    Matsuzawa, Takahito
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [23] Dynamic Mode Decomposition with Control
    Proctor, Joshua L.
    Brunton, Steven L.
    Kutz, J. Nathan
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 142 - 161
  • [24] Consistent Dynamic Mode Decomposition
    Azencot, Omri
    Yin, Wotao
    Bertozzi, Andrea
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (03): : 1565 - 1585
  • [25] Applications of the dynamic mode decomposition
    Schmid, P. J.
    Li, L.
    Juniper, M. P.
    Pust, O.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2011, 25 (1-4) : 249 - 259
  • [26] Challenges in dynamic mode decomposition
    Wu, Ziyou
    Brunton, Steven L.
    Revzen, Shai
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2021, 18 (185)
  • [27] Robust Dynamic Mode Decomposition
    Abolmasoumi, Amir Hossein
    Netto, Marcos
    Mili, Lamine
    IEEE ACCESS, 2022, 10 : 65473 - 65484
  • [28] Constrained Dynamic Mode Decomposition
    Krake T.
    Klotzl D.
    Eberhardt B.
    Weiskopf D.
    IEEE Trans Visual Comput Graphics, 2023, 1 (182-192): : 182 - 192
  • [29] Randomized Dynamic Mode Decomposition
    Erichson, N. Benjamin
    Mathelin, Ionel
    Kutz, J. Nathan
    Brunton, Steven L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (04): : 1867 - 1891
  • [30] Bayesian Dynamic Mode Decomposition
    Takeishi, Naoya
    Kawahara, Yoshinobu
    Tabei, Yasuo
    Yairi, Takehisa
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2814 - 2821