Deep learning for retinal vessel segmentation: a systematic review of techniques and applications

被引:0
|
作者
Liu, Zhihui [1 ,2 ]
Sunar, Mohd Shahrizal [1 ,2 ]
Tan, Tian Swee [3 ,4 ]
Hitam, Wan Hazabbah Wan [5 ]
机构
[1] Univ Teknol Malaysia, Fac Comp, Johor Baharu 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Inst Human Ctr Engn, Media & Game Innovat Ctr Excellence, Johor Baharu 81310, Johor, Malaysia
[3] Univ Teknol Malaysia, Fac Elect Engn, Dept Biomed Engn & Hlth Sci, Johor Baharu 81310, Johor, Malaysia
[4] Univ Teknol Malaysia, Inst Human Ctr Engn, IJN UTM Cardiovasc Engn Ctr, Johor Baharu 81310, Johor, Malaysia
[5] Univ Sains Malaysia, Sch Med Sci, Dept Ophthalmol & Visual Sci, Hlth Campus, Kubang Kerian 16150, Kelantan, Malaysia
关键词
Retinal vessels segmentation; Fundus images; Deep learning; Systematic review; BLOOD-VESSELS; NETWORK; NET; CLASSIFICATION; FRAMEWORK; IMAGES; FUNDUS;
D O I
10.1007/s11517-025-03324-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ophthalmic diseases are a leading cause of vision loss, with retinal damage being irreversible. Retinal blood vessels are vital for diagnosing eye conditions, as even subtle changes in their structure can signal underlying issues. Retinal vessel segmentation is key for early detection and treatment of eye diseases. Traditionally, ophthalmologists manually segmented vessels, a time-consuming process based on clinical and geometric features. However, deep learning advancements have led to automated methods with impressive results. This systematic review, following PRISMA guidelines, examines 79 studies on deep learning-based retinal vessel segmentation published between 2020 and 2024 from four databases: Web of Science, Scopus, IEEE Xplore, and PubMed. The review focuses on datasets, segmentation models, evaluation metrics, and emerging trends. U-Net and Transformer architectures have shown success, with U-Net's encoder-decoder structure preserving details and Transformers capturing global context through self-attention mechanisms. Despite their effectiveness, challenges remain, suggesting future research should explore hybrid models combining U-Net, Transformers, and GANs to improve segmentation accuracy. This review offers a comprehensive look at the current landscape and future directions in retinal vessel segmentation.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Deep Learning Models for Retinal Blood Vessels Segmentation: A Review
    Soomro, Toufique Ahmed
    Afifi, Ahmed J.
    Zheng, Lihong
    Soomro, Shafiullah
    Gao, Junbin
    Hellwich, Olaf
    Paul, Manoranjan
    IEEE ACCESS, 2019, 7 : 71696 - 71717
  • [32] Deep Learning in Retinal Image Segmentation and Feature Extraction: A Review
    Hoque, Mohammed Enamul
    Kipli, Kuryati
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2021, 17 (14) : 103 - 118
  • [33] Deep learning techniques and their applications: A short review
    Kumar, Vaibhav
    Garg, M. L.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2018, 11 (04): : 699 - 709
  • [34] Deforestation detection using deep learning-based semantic segmentation techniques: a systematic review
    Jelas, Imran Md
    Zulkifley, Mohd Asyraf
    Abdullah, Mardina
    Spraggon, Martin
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2024, 7
  • [35] A Review of Blood Vessel Segmentation Techniques
    Bukenya, Faiza
    Kiweewa, Abdurahman
    Bai, Li
    2018 1ST INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS' 2018), 2018,
  • [36] Ensemble Learning Approaches for Retinal Vessel Segmentation
    Ribeiro, Alexandrine
    Lopes, Ana P.
    Silva, Carlos A.
    2019 6TH IEEE PORTUGUESE MEETING IN BIOENGINEERING (ENBENG), 2019,
  • [37] Comparative Analysis of Vessel Segmentation Techniques in Retinal Images
    Imran, Azhar
    Li, Jianqiang
    Pei, Yan
    Yang, Ji-Jiang
    Wang, Qing
    IEEE ACCESS, 2019, 7 : 114862 - 114887
  • [38] Impact of Retinal Enhancement Techniques on Blood Vessel Segmentation
    Alqahtani, Fasial Majed
    Adwan, Somaya
    Ahmad, Mohd Yazed
    Karman, Salmah Binti
    Maged, Rasha
    Maged, Lamya'a
    2024 IEEE 14TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS, ISCAIE 2024, 2024, : 517 - 521
  • [39] Using deep learning techniques in medical imaging: a systematic review of applications on CT and PET
    Domingues, Ines
    Pereira, Gisele
    Martins, Pedro
    Duarte, Hugo
    Santos, Joao
    Abreu, Pedro Henriques
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (06) : 4093 - 4160
  • [40] A systematic review on deep learning architectures and applications
    Khamparia, Aditya
    Singh, Karan Mehtab
    EXPERT SYSTEMS, 2019, 36 (03)