IMU-based Online Multi-lidar Calibration

被引:2
|
作者
Das, Sandipan [1 ,2 ]
Boberg, Bengt [2 ]
Fallon, Maurice [3 ]
Chatterjee, Saikat [1 ]
机构
[1] KTH EECS, Stockholm, Sweden
[2] Scania, Sodertalje, Sweden
[3] Univ Oxford, ORI, Oxford, England
来源
2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024 | 2024年
关键词
D O I
10.1109/IV55156.2024.10588695
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern autonomous systems typically use several sensors for perception. For best performance, accurate and reliable extrinsic calibration is necessary. In this research, we propose a reliable technique for the extrinsic calibration of several lidars on a vehicle without the need for odometry estimation or fiducial markers. First, our method generates an initial guess of the extrinsics by matching the raw signals of IMUs co-located with each lidar. This initial guess is then used in ICP and point cloud feature matching which refines and verifies this estimate. Furthermore, we can use observability criteria to choose a subset of the IMU measurements that have the highest mutual information - rather than comparing all the readings. We have successfully validated our methodology using data gathered from Scania test vehicles.
引用
收藏
页码:3227 / 3234
页数:8
相关论文
共 50 条
  • [41] IMU-Based Smartphone-to-Vehicle Positioning
    Wahlstrom, Johan
    Skog, Isaac
    Handel, Peter
    Nehorai, Arye
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2016, 1 (02): : 139 - 147
  • [42] SmartSwim, a Novel IMU-Based Coaching Assistance
    Rad, Mahdi Hamidi
    Gremeaux, Vincent
    Masse, Fabien
    Dadashi, Farzin
    Aminian, Kamiar
    SENSORS, 2022, 22 (09)
  • [43] A Modular Architecture for IMU-Based Data Gloves
    Carfi, Alessandro
    Alame, Mohamad
    Belcamino, Valerio
    Mastrogiovanni, Fulvio
    EUROPEAN ROBOTICS FORUM 2024, ERF, VOL 1, 2024, 32 : 53 - 57
  • [44] Online IMU Intrinsic Calibration: Is It Necessary?
    Yang, Yulin
    Geneva, Patrick
    Zuo, Xingxing
    Huang, Guoquan
    ROBOTICS: SCIENCE AND SYSTEMS XVI, 2020,
  • [45] An IMU-based System Identification Technique for Quadrotors
    Khorani, Vahid
    Ajilforoushan, Naeem
    Shahri, Alireza Mohammad
    2013 3RD JOINT CONFERENCE OF AI & ROBOTICS AND 5TH ROBOCUP IRAN OPEN INTERNATIONAL SYMPOSIUM (RIOS), 2013, : 145 - 150
  • [46] Multi-lidar wind resource mapping in complex terrain
    Menke, Robert
    Vasiljevic, Nikola
    Wagner, Johannes
    Oncley, Steven P.
    Mann, Jakob
    WIND ENERGY SCIENCE, 2020, 5 (03) : 1059 - 1073
  • [47] IMU-Based Gait Phase Recognition for Stroke Survivors
    Lou, Yu
    Wang, Rongli
    Mai, Jingeng
    Wang, Ninghua
    Wang, Qi
    ROBOTICA, 2019, 37 (12) : 2195 - 2208
  • [48] IMU-based mounting parameter estimation on construction vehicles
    Pentek, Zs.
    Hiller, T.
    Liewald, T.
    Kuhlmann, B.
    Czmerk, A.
    2017 DGON INERTIAL SENSORS AND SYSTEMS (ISS), 2017,
  • [49] Automated, IMU-based spine angle estimation and IMU location identification for telerehabilitation
    Pan, Huiming
    Wang, Hong
    Li, Dongxuan
    Zhu, Kezhe
    Gao, Yuxiang
    Yin, Ruiqing
    Shull, Peter B.
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2024, 21 (01)
  • [50] A Robust LiDAR-IMU Joint Calibration Method
    Wang L.
    Xiang Z.
    Jiqiren/Robot, 2023, 45 (03): : 267 - 275