Bayesian Multilayered Mediation Analysis for Cancer Pharmacogenomics

被引:0
|
作者
Seo, Dahun [1 ]
Baladandayuthapani, Veerabhadran [2 ]
Park, Taesung [1 ,3 ]
Ha, Min Jin [4 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI USA
[3] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
[4] Yonsei Univ, Grad Sch Publ Hlth, Dept Biostat, Seoul, South Korea
来源
STAT | 2024年 / 13卷 / 04期
基金
新加坡国家研究基金会; 美国国家卫生研究院;
关键词
drug sensitivity; high-dimensional multilayered mediators; interventional effects; multilayered Gaussian graphical models; multiomics; probit model; BREAST-CANCER; RESISTANCE; DECOMPOSITION; PALBOCICLIB; MECHANISMS; EXPRESSION;
D O I
10.1002/sta4.70020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiomic data from multilevel biological systems are becoming common and motivate integrative modelling approaches to decipher within- and cross-platform dependencies. Mediation analysis aims to identify mediating mechanisms that regulate the effect of an exposure on an outcome. In multiomic contexts, identification of genomic mediators of disease outcomes provides a deeper understanding of mechanisms of disease and corresponding therapeutic targets. While there has been significant work on joint modelling of high-dimensional potential mediators, approaches that can identify individual mediators in presence of high-dimensional potential mediators are lacking. We posit that the multiomic data are interrelated following multilayered Gaussian graphical models that include undirected and directed acyclic graphs as special cases. We develop a Bayesian inferential framework for multilayered mediation analysis with continuous, binary, and ordinal outcomes using probit models. As opposed to existing approaches focusing on identifying joint mediation effects, we decompose the joint effect into effects attributable to individual mediators in the framework of interventional mediation analysis. Simulations demonstrate our method outperforms other existing approaches to identify mediators that have nonzero indirect effects to the outcome. We apply our method to multiomic analysis on drug sensitivity outcomes of palbociclib and agents for endocrine therapy, standard care for breast cancer.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Pharmacogenomics and colorectal cancer
    Lenz, HJ
    MINERVA BIOTECNOLOGICA, 2004, 16 (03) : 189 - 202
  • [42] Preterm birth etiological pathways: a Bayesian networks and mediation analysis approach
    Dario Elias
    Hebe Campaña
    Fernando A. Poletta
    Silvina L. Heisecke
    Juan A. Gili
    Julia Ratowiecki
    Mariela Pawluk
    Maria R. Santos
    Viviana Cosentino
    Rocio Uranga
    Cesar Saleme
    Monica Rittler
    Hugo B. Krupitzki
    Jorge S. Lopez Camelo
    Lucas G. Gimenez
    Pediatric Research, 2022, 91 : 1882 - 1889
  • [43] Preterm birth etiological pathways: a Bayesian networks and mediation analysis approach
    Elias, Dario
    Campana, Hebe
    Poletta, Fernando A.
    Heisecke, Silvina L.
    Gili, Juan A.
    Ratowiecki, Julia
    Pawluk, Mariela
    Santos, Maria R.
    Cosentino, Viviana
    Uranga, Rocio
    Saleme, Cesar
    Rittler, Monica
    Krupitzki, Hugo B.
    Camelo, Jorge S. Lopez
    Gimenez, Lucas G.
    PEDIATRIC RESEARCH, 2022, 91 (07) : 1882 - 1889
  • [44] Somatic pharmacogenomics in cancer
    Ikediobi, O. N.
    PHARMACOGENOMICS JOURNAL, 2008, 8 (05): : 305 - 314
  • [45] Pharmacogenomics in colon cancer
    Lenz, H. -J.
    EJC SUPPLEMENTS, 2009, 7 (04): : 5 - 5
  • [46] Pharmacogenomics in colorectal cancer
    Lenz, HJ
    SEMINARS IN ONCOLOGY, 2003, 30 (04) : 47 - 53
  • [47] Pharmacogenomics on gastric cancer
    Katoh, M
    Katoh, M
    CANCER BIOLOGY & THERAPY, 2004, 3 (06) : 566 - 567
  • [48] Pharmacogenomics and colorectal cancer
    Lenz, Heinz-Josef
    NEW TRENDS IN CANCER FOR THE 21ST CENTURY, 2ND EDITION, 2006, 587 : 211 - 231
  • [49] Pharmacogenomics in bladder cancer
    Dancik, Garrett M.
    Theodorescu, Dan
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2014, 32 (01) : 16 - 22
  • [50] Pharmacogenomics and stomach cancer
    Toffoli, G
    Cecchin, E
    PHARMACOGENOMICS, 2004, 5 (06) : 627 - 641