THE LOCAL SUBTRACTION APPROACH FOR EEG AND MEG FORWARD MODELING

被引:0
|
作者
Hoeltershinken, Malte b. [1 ]
Lange, Pia [1 ,2 ]
Erdbruegger, Tim [1 ]
Buschermoehle, Yvonne [1 ,3 ]
Wallois, Fabrice [4 ,5 ]
Ii, Alena buyx [6 ]
Pursiainen, Sampsa [7 ]
Vorwerk, Johannes [8 ,9 ]
Engwer, Christian [10 ]
Wolters, Carsten h. [1 ,3 ]
机构
[1] Univ Munster, Inst Biomagnetism & Bio signal Anal, Munster, Germany
[2] Univ Munster, Inst Med Informat, Munster, Germany
[3] Univ Munster, Otto Creutzfeldt Ctr Cognit & Behav Neurosci, Munster, Germany
[4] Jules Verne Univ Picardi, INSERM, Res Grp Multimo dal Anal Brain Funct, U1105, Amiens, France
[5] CHU Picardie, Pediat Funct Explorat Nervous Syst Dept, Amiens, France
[6] Tech Univ Munich, Inst Hist & Eth Med, Munich, Germany
[7] Tampere Univ, Fac Informat Technol & Commun Sci, Comp Sci Unit, Tampere, Finland
[8] Private Univ Hlth Sci, Inst Elect & Biomed Engn, Med Informat & Technol, Hall In Tirol, Austria
[9] Univ Innsbruck, Dept Mechatron, Innsbruck, Austria
[10] Univ Munster, Fac Math & Comp Sci, Munster, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2025年 / 47卷 / 01期
基金
芬兰科学院;
关键词
EEG; MEG; source analysis; finite element method; source modeling; FINITE-ELEMENT-METHOD; CURRENT DIPOLE; IMPLEMENTATION; SENSITIVITY; PARALLEL;
D O I
10.1137/23M1582874
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In FEM-based electroencephalography (EEG) and magnetoencephalography (MEG) source analysis, the subtraction approach has been proposed to simulate sensor measurements generated by neural activity. While this approach possesses a rigorous foundation and produces accurate results, its major downside is that it is computationally prohibitively expensive in practical applications. To overcome this, we developed a new approach, called the local subtraction approach. This approach is designed to preserve the mathematical foundation of the subtraction approach, while also leading to sparse right-hand sides in the FEM formulation, making it efficiently computable. We achieve this by introducing a cut-off into the subtraction, restricting its influence to the immediate neighborhood of the source. We perform validation in multilayer sphere models where analytical solutions exist. There, we demonstrate that the local subtraction approach is vastly more efficient than the subtraction approach. Moreover, we find that for the EEG forward problem, the local subtraction approach is less dependent on the global structure of the FEM mesh when compared to the subtraction approach. Additionally, we show the local subtraction approach to rival, and in many cases even surpass, the other investigated approaches in terms of accuracy. For the MEG forward problem, we show the local subtraction approach and the subtraction approach to produce highly accurate approximations of the volume currents close to the source. The local subtraction approach thus reduces the computational cost of the subtraction approach to an extent that makes it usable in practical applications without sacrificing the rigorousness and accuracy the subtraction approach is known for.
引用
收藏
页码:B160 / B189
页数:30
相关论文
共 50 条
  • [21] Modeling and detecting deep brain activity with MEG & EEG
    Attal, Yohan
    Bhattacharjee, Manik
    Yelnik, Jerome
    Cottereau, Benoit
    Lefevre, Julien
    Okada, Yoshio
    Bardinet, Eric
    Chupin, Marie
    Baillet, Sylvain
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 4937 - +
  • [22] Combining MEG and EEG Source Modeling in Epilepsy Evaluations
    Ebersole, John S.
    Ebersole, Susan M.
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2010, 27 (06) : 360 - 371
  • [23] A guideline for head volume conductor modeling in EEG and MEG
    Vorwerk, Johannes
    Cho, Jae-Hyun
    Rampp, Stefan
    Hamer, Hajo
    Knoesche, Thomas R.
    Wolters, Carsten H.
    NEUROIMAGE, 2014, 100 : 590 - 607
  • [24] Dynamic causal modeling of evoked responses in EEG and MEG
    David, Olivier
    Kiebel, Stefan J.
    Harrison, Lee M.
    Mattout, Jrmie
    Kilner, James M.
    Friston, Karl J.
    NEUROIMAGE, 2006, 30 (04) : 1255 - 1272
  • [25] Coupled oscillators for modeling and analysis of EEG/MEG oscillations
    Leistritz, Lutz
    Putsche, Peter
    Schwab, Karin
    Hesse, Wolfram
    Suesse, Thomas
    Haueisen, Jens
    Witte, Herbert
    BIOMEDIZINISCHE TECHNIK, 2007, 52 (01): : 83 - 89
  • [26] Forward and backward autoregressive modeling of EEG
    Kong, X
    PROCEEDINGS OF THE 19TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 19, PTS 1-6: MAGNIFICENT MILESTONES AND EMERGING OPPORTUNITIES IN MEDICAL ENGINEERING, 1997, 19 : 1215 - 1217
  • [27] Independent component approach to the analysis of EEG and MEG recordings
    Vigário, R
    Särelä, J
    Jousmäki, V
    Hämäläinen, M
    Oja, E
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (05) : 589 - 593
  • [28] A COMPARISON OF DIFFERENT NUMERICAL-METHODS FOR SOLVING THE FORWARD PROBLEM IN EEG AND MEG
    PRUIS, GW
    GILDING, BH
    PETERS, MJ
    PHYSIOLOGICAL MEASUREMENT, 1993, 14 : A1 - A9
  • [29] Reliable Fast Adaptive Finite Element Methods for the EEG/MEG Forward Problem
    Hanrath, A.
    Grasedyck, L.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2014, 59 : S629 - S629
  • [30] New Methodology for the Forward Problem in EEG/MEG Source Analysis and in Brain Stimulation
    Vorwerk, J.
    Wagner, S.
    Aydin, U.
    Engwer, C.
    Wolters, C. H.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2014, 59 : S628 - S628