Dual Prototype Contrastive Network for Generalized Zero-Shot Learning

被引:1
|
作者
Jiang, Huajie [1 ]
Li, Zhengxian [1 ]
Hu, Yongli [1 ]
Yin, Baocai [1 ]
Yang, Jian [2 ]
van den Hengel, Anton [3 ]
Yang, Ming-Hsuan [4 ]
Qi, Yuankai
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
[2] Macquarie Univ, Sch Comp, Sydney, NSW 2109, Australia
[3] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5000, Australia
[4] Univ Calif Merced, Dept Elect Engn & Comp Sci, Merced, CA 95343 USA
基金
中国国家自然科学基金;
关键词
Visualization; Semantics; Prototypes; Contrastive learning; Zero shot learning; Generative adversarial networks; Object recognition; Feature extraction; Training; Face recognition; Generalized zero-shot learning; prototype learning; contrastive learning;
D O I
10.1109/TCSVT.2024.3474910
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Generalized zero-shot learning (GZSL) requires that models are able to recognize classes they were trained on, and new classes they haven't seen before. Feature-generation approaches are popular due to their effectiveness in mitigating overfitting to the training classes. Existing generative approaches usually adopt simple discriminators for distribution or classification supervision, however, thus limiting their ability to generate visual features that are discriminative of and transferable to novel categories. To overcome this limitation and improve the quality of generated features, we propose a dual prototype contrastive augmented discriminator for the generative adversarial network. Specifically, we design a Dual Prototype Contrastive Network (DPCN), which leverages complementary information between visual space and semantic space through multi-task prototype contrastive learning. Contrastive learning of the visual prototypes enhances the ability of the generated features to distinguish between classes, while the contrastive learning of the semantic prototypes improves their transferability. Furthermore, we introduce margins into the contrastive learning process to ensure both intra-class compactness and inter-class separation. To demonstrate the effectiveness of the proposed approach, we conduct experiments on three widely-used zero-shot learning benchmark datasets, where DPCN achieves state-of-the-art performance for GZSL.
引用
收藏
页码:1111 / 1122
页数:12
相关论文
共 50 条
  • [31] A transformer-based dual contrastive learning approach for zero-shot learning
    Lei, Yu
    Jing, Ran
    Li, Fangfang
    Gao, Quanxue
    Deng, Cheng
    NEUROCOMPUTING, 2025, 626
  • [32] Contrast and Aggregation Network for Generalized Zero-shot Learning
    Li, Bin
    Xie, Cheng
    Yang, Jingqi
    Duan, Haoran
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 383 - 394
  • [33] Isolation and distillation network for generalized zero-shot learning
    Liang Y.
    Cao W.
    Neural Computing and Applications, 2024, 36 (22) : 13935 - 13955
  • [34] Dual Part Discovery Network for Zero-Shot Learning
    Ge, Jiannan
    Xie, Hongtao
    Min, Shaobo
    Li, Pandeng
    Zhang, Yongdong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3244 - 3252
  • [35] Dual triplet network for image zero-shot learning
    Ji, Zhong
    Wang, Hai
    Pang, Yanwei
    Shao, Ling
    NEUROCOMPUTING, 2020, 373 : 90 - 97
  • [36] Dual-verification network for zero-shot learning
    Zhang, Haofeng
    Long, Yang
    Yang, Wankou
    Shao, Ling
    INFORMATION SCIENCES, 2019, 470 : 43 - 57
  • [37] Prototype-Augmented Self-Supervised Generative Network for Generalized Zero-Shot Learning
    Wu, Jiamin
    Zhang, Tianzhu
    Zha, Zheng-Jun
    Luo, Jiebo
    Zhang, Yongdong
    Wu, Feng
    IEEE Transactions on Image Processing, 2024, 33 : 1938 - 1951
  • [38] Prototype-Augmented Self-Supervised Generative Network for Generalized Zero-Shot Learning
    Wu, Jiamin
    Zhang, Tianzhu
    Zha, Zheng-Jun
    Luo, Jiebo
    Zhang, Yongdong
    Wu, Feng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1938 - 1951
  • [39] Dual VAEGAN: A generative model for generalized zero-shot learning
    Luo, Yuxuan
    Wang, Xizhao
    Pourpanah, Farhad
    APPLIED SOFT COMPUTING, 2021, 107
  • [40] Co-GZSL: Feature Contrastive Optimization for Generalized Zero-Shot Learning
    Li, Qun
    Zhan, Zhuxi
    Shen, Yaying
    Bhanu, Bir
    NEURAL PROCESSING LETTERS, 2024, 56 (02)