Addressing the Data Scarcity Problem in Ecotoxicology via Small Data Machine Learning Methods

被引:0
|
作者
Wang, Ying [1 ]
Dong, Jinchu [1 ]
Zhou, Yunchi [1 ]
Cheng, Yinghao [1 ,2 ]
Zhao, Xiaoli [3 ]
Peijnenburg, Willie J. G. M. [4 ,5 ]
Vijver, Martina G. [4 ]
Leung, Kenneth M. Y. [6 ,7 ]
Fan, Wenhong [1 ]
Wu, Fengchang [3 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Nucl & Radiat Safety Ctr, Beijing 100082, Peoples R China
[3] Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China
[4] Leiden Univ, Inst Environm Sci, NL-2300 RA Leiden, Netherlands
[5] Natl Inst Publ Hlth & Environm, Ctr Safety Prod & Subst, NL-3720 BA Bilthoven, Netherlands
[6] City Univ Hong Kong, Dept Chem, State Key Lab Marine Pollut, Hong Kong 999077, Peoples R China
[7] City Univ Hong Kong, Sch Energy & Environm, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金; 欧盟地平线“2020”; 北京市自然科学基金; 国家重点研发计划;
关键词
ecotoxicity; small data machine learning (SDML); prediction; data augmentation; modeling workflow; artificial intelligence;
D O I
10.1021/acs.est.5c00510
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
引用
收藏
页码:5867 / 5871
页数:5
相关论文
共 50 条
  • [41] Addressing data deficiencies in outage reports: A qualitative and machine learning approach
    Zarkovic, Sanja Duvnjak
    Weiss, Xavier
    Hilber, Patrik
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 236
  • [42] Addressing imbalanced data for machine learning based mineral prospectivity mapping
    Farahnakian, Fahimeh
    Sheikh, Javad
    Zelioli, Luca
    Nidhi, Dipak
    Seppa, Iiro
    Ilo, Rami
    Nevalainen, Paavo
    Heikkonen, Jukka
    ORE GEOLOGY REVIEWS, 2024, 174
  • [43] A Data Flow Model to Solve the Data Distribution Changing Problem in Machine Learning
    Shang, Bo-Wen
    Wang, Ke
    3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS (ITA 2016), 2016, 7
  • [44] Missing data imputation using statistical and machine learning methods in a real breast cancer problem
    Jerez, Jose M.
    Molina, Ignacio
    Garcia-Laencina, Pedro J.
    Alba, Emilio
    Ribelles, Nuria
    Martin, Miguel
    Franco, Leonardo
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 50 (02) : 105 - 115
  • [45] Survey of Machine Learning Methods for Big Data Applications
    Vinothini, A.
    Priya, S. Baghavathi
    2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS), 2017,
  • [46] ANALYSIS OF LArTPC DATA USING MACHINE LEARNING METHODS
    Falko, A.
    Gogota, O.
    Yermolenko, R.
    Kadenko, I.
    JOURNAL OF PHYSICAL STUDIES, 2024, 28 (01):
  • [47] Quantifying performance of machine learning methods for neuroimaging data
    Jollans, Lee
    Boyle, Rory
    Artiges, Eric
    Banaschewski, Tobias
    Desrivieres, Sylvane
    Grigis, Antoine
    Martinot, Jean-Luc
    Paus, Tomas
    Smolka, Michael N.
    Walter, Henrik
    Schumann, Gunter
    Garavan, Hugh
    Whelan, Robert
    NEUROIMAGE, 2019, 199 : 351 - 365
  • [48] Machine Learning Methods for Disease Prediction with Claims Data
    Christensen, Tanner
    Frandsen, Abraham
    Glazier, Seth
    Humpherys, Jeffrey
    Kartchner, David
    2018 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2018, : 467 - 471
  • [49] Machine Learning and Data Mining Methods in Diabetes Research
    Kavakiotis, Ioannis
    Tsave, Olga
    Salifoglou, Athanasios
    Maglaveras, Nicos
    Vlahavas, Ioannis
    Chouvarda, Ioanna
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2017, 15 : 104 - 116
  • [50] A review of machine learning methods used for educational data
    Ersozlu, Zara
    Taheri, Sona
    Koch, Inge
    EDUCATION AND INFORMATION TECHNOLOGIES, 2024, 29 (16) : 22125 - 22145