Neural Architecture Search for Parameter-Efficient Fine-tuning of Large Pre-trained Language Models

被引:0
|
作者
Lawton, Neal [1 ]
Kumar, Anoop [2 ]
Thattai, Govind [2 ]
Galstyan, Aram [2 ]
Ver Steeg, Greg [2 ]
机构
[1] Informat Sci Inst, Marina Del Rey, CA 90292 USA
[2] Amazon Alexa AI, Redmond, WA USA
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Parameter-efficient tuning (PET) methods fit pre-trained language models (PLMs) to downstream tasks by either computing a small compressed update for a subset of model parameters, or appending and fine-tuning a small number of new model parameters to the pre-trained network. Hand-designed PET architectures from the literature perform well in practice, but have the potential to be improved via automated neural architecture search (NAS). We propose an efficient NAS method for learning PET architectures via structured and unstructured pruning. We present experiments on GLUE demonstrating the effectiveness of our algorithm and discuss how PET architectural design choices affect performance in practice.
引用
收藏
页码:8506 / 8515
页数:10
相关论文
共 50 条
  • [11] Characterizing Communication in Distributed Parameter-Efficient Fine-Tuning for Large Language Models
    Alnaasan, Nawras
    Huang, Horng-Ruey
    Shafi, Aamir
    Subramoni, Hari
    Panda, Dhabaleswar K.
    2024 IEEE SYMPOSIUM ON HIGH-PERFORMANCE INTERCONNECTS, HOTI 2024, 2024, : 11 - 19
  • [12] Democratizing protein language models with parameter-efficient fine-tuning
    Sledzieski, Samuel
    Kshirsagar, Meghana
    Baek, Minkyung
    Dodhia, Rahul
    Ferres, Juan Lavista
    Berger, Bonnie
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (26)
  • [13] ADT: An Additive Delta-Tuning approach for parameter-efficient tuning in pre-trained language models
    Li, Dong
    Tang, Jintao
    Li, Shasha
    Wang, Ting
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 382 - 386
  • [14] Fine-Tuning Pre-Trained Language Models with Gaze Supervision
    Deng, Shuwen
    Prasse, Paul
    Reich, David R.
    Scheffer, Tobias
    Jager, Lena A.
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2: SHORT PAPERS, 2024, : 217 - 224
  • [15] Hadamard Adapter: An Extreme Parameter-Efficient Adapter Tuning Method for Pre-trained Language Models
    Chen, Yuyan
    Fu, Qiang
    Fan, Ge
    Du, Lun
    Lou, Jian-Guang
    Han, Shi
    Zhang, Dongmei
    Li, Zhixu
    Xiao, Yanghua
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 276 - 285
  • [16] Efficient Fine-Tuning for Low-Resource Tibetan Pre-trained Language Models
    Zhou, Mingjun
    Daiqing, Zhuoma
    Qun, Nuo
    Nyima, Tashi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT VII, 2024, 15022 : 410 - 422
  • [17] VL-MPFT: Multitask Parameter-Efficient Fine-Tuning for Visual-Language Pre-trained Models via Task-Adaptive Masking
    Zhu, Min
    Liu, Guanming
    Wei, Zhihua
    PATTERN RECOGNITION AND COMPUTER VISION, PT V, PRCV 2024, 2025, 15035 : 379 - 394
  • [18] FedPETuning: When Federated Learning Meets the Parameter-Efficient Tuning Methods of Pre-trained Language Models
    Zhang, Zhuo
    Yang, Yuanhang
    Dai, Yong
    Wang, Qifan
    Yu, Yue
    Que, Lizhen
    Xu, Zenglin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 9963 - 9977
  • [19] Pruning Pre-trained Language ModelsWithout Fine-Tuning
    Jiang, Ting
    Wang, Deqing
    Zhuang, Fuzhen
    Xie, Ruobing
    Xia, Feng
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 594 - 605
  • [20] FedITD: A Federated Parameter-Efficient Tuning With Pre-Trained Large Language Models and Transfer Learning Framework for Insider Threat Detection
    Wang, Zhi Qiang
    Wang, Haopeng
    El Saddik, Abdulmotaleb
    IEEE ACCESS, 2024, 12 : 160396 - 160417