Duality for condensed cohomology of the Weil group of a p-adic field

被引:0
|
作者
Artusa, Marco [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33400 Talence, France
来源
DOCUMENTA MATHEMATICA | 2024年 / 29卷
关键词
cohomology of condensed groups; condensed mathematics; Weil group; Pontryagin duality; local Tate duality; ETALE TOPOLOGY;
D O I
10.4171/DM/977
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the theory of Condensed Mathematics to build a condensed cohomology theory for the Weil group of a p-adic field. The cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups.
引用
收藏
页码:1381 / 1434
页数:54
相关论文
共 50 条
  • [31] P-ADIC STRINGS, THE WEIL CONJECTURES AND ANOMALIES
    GROSSMAN, B
    PHYSICS LETTERS B, 1987, 197 (1-2) : 101 - 104
  • [32] The p-adic valuations of Weil sums of binomials
    Katz, Daniel J.
    Langevin, Philippe
    Lee, Sangman
    Sapozhnikov, Yakov
    JOURNAL OF NUMBER THEORY, 2017, 181 : 1 - 26
  • [33] The p-adic representation of the Weil-Deligne group associated to an abelian variety
    Noot, Rutger
    JOURNAL OF NUMBER THEORY, 2017, 172 : 301 - 320
  • [34] Prismatic cohomology and p-adic homotopy theory
    Shin, Tobias
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2023, 18 (04) : 521 - 541
  • [35] Hochschild cohomology and p-adic Lie groups
    Sorensen, Claus
    MUENSTER JOURNAL OF MATHEMATICS, 2021, 14 (01): : 101 - 122
  • [36] COHOMOLOGY OF UNISERIAL p-ADIC SPACE GROUPS
    Diaz Ramos, Antonio
    Garaialde Ocana, Oihana
    Gonzalez-Sanchez, Jon
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (09) : 6725 - 6750
  • [37] Unramified cohomology on a smooth p-adic curve
    Ducros, A
    COMPOSITIO MATHEMATICA, 2002, 130 (01) : 89 - 117
  • [38] p-adic etale cohomology of period domains
    Colmez, Pierre
    Dospinescu, Gabriel
    Hauseux, Julien
    Niziol, Wieslawa
    MATHEMATISCHE ANNALEN, 2021, 381 (1-2) : 105 - 180
  • [39] Completed cohomology and the p-adic Langlands program
    Emerton, Matthew
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 319 - 342
  • [40] Rigid syntomic cohomology and p-adic polylogarithms
    Bannai, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 529 : 205 - 237