Duality for condensed cohomology of the Weil group of a p-adic field

被引:0
|
作者
Artusa, Marco [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33400 Talence, France
来源
DOCUMENTA MATHEMATICA | 2024年 / 29卷
关键词
cohomology of condensed groups; condensed mathematics; Weil group; Pontryagin duality; local Tate duality; ETALE TOPOLOGY;
D O I
10.4171/DM/977
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the theory of Condensed Mathematics to build a condensed cohomology theory for the Weil group of a p-adic field. The cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups.
引用
收藏
页码:1381 / 1434
页数:54
相关论文
共 50 条
  • [1] Cohomology of the Weil group of a p-adic field
    Karpuk, David A.
    JOURNAL OF NUMBER THEORY, 2013, 133 (04) : 1270 - 1288
  • [2] A LEFSCHETZ DUALITY THEOREM IN P-ADIC COHOMOLOGY
    YOO, JS
    LUBKIN, S
    AMERICAN JOURNAL OF MATHEMATICS, 1990, 112 (04) : 569 - 594
  • [3] Duality for K-analytic Group Cohomology of p-adic Lie Groups
    Thomas, Oliver
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 1213 - 1226
  • [4] p-adic Cohomology
    Kedlaya, Kiran S.
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 667 - 684
  • [5] Weil-etale cohomology of curves over p-adic fields
    Karpuk, David A.
    JOURNAL OF ALGEBRA, 2014, 416 : 122 - 138
  • [6] On p-adic L-series, p-adic cohomology and class field theory
    Burns, David
    Macias Castillo, Daniel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 732 : 55 - 83
  • [7] P-ADIC DUALITY
    GUERRAOUI, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 275 (25): : 1281 - 1283
  • [8] P-ADIC ETALE COHOMOLOGY
    BLOCH, S
    KATO, K
    PUBLICATIONS MATHEMATIQUES, 1986, (63): : 107 - 152
  • [9] Syntomic cohomology and p-adic motivic cohomology
    Ertl, Veronika
    Niziol, Wieslawa
    ALGEBRAIC GEOMETRY, 2019, 6 (01): : 100 - 131
  • [10] SYNTOMIC COHOMOLOGY AND P-ADIC ETALE COHOMOLOGY
    KATO, K
    MESSING, W
    TOHOKU MATHEMATICAL JOURNAL, 1992, 44 (01) : 1 - 9