Time-periodic electroosmotic flow of non-Newtonian fluid through a polyelectrolyte-grafted circular microchannel

被引:0
|
作者
Kumar, Brijesh [1 ]
Jangili, Srinivas [1 ]
机构
[1] Natl Inst Technol Warangal, Dept Math, Warangal 506004, Telangana, India
关键词
THERMAL-CHARACTERISTICS; MICROFLUIDICS;
D O I
10.1063/5.0260942
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present research investigates the characteristics of flow dynamics and heat transfer of couple stress fluid through a circular microtube grafted with a polyelectrolyte layer. An alternating current electric field is applied to influence the fluid flow and heat transfer. A mathematical framework is established to describe the phenomenon of time-periodic alternating current electroosmotic flow by incorporating the Poisson-Boltzmann equations, couple stress fluid momentum equations, and energy equations for both polyelectrolyte and electrolyte layers. In the beginning, the Poisson-Boltzmann equation is solved analytically under the Debye-H & uuml;ckel approximation to obtain the electric potential distribution. Subsequently, momentum equations of the couple stress fluid are then established for both the polyelectrolyte and electrolyte layers, and analytical solutions for these equations are obtained. Finally, the energy equation is discretized numerically using the finite difference scheme with Thomas algorithm. The primary results of this study indicate that velocity oscillation increases, but it is confined to the region near the interface of polyelectrolyte-electrolyte layers, while the amplitude of velocity oscillation decreases with higher oscillating Reynolds numbers. Temperature magnitude increases with the Debye-H & uuml;ckel parameter, thickness of polyelectrolyte layer, couple stress parameters, and Brinkman number, while the drag parameter decreases it. Further, as the oscillating Reynolds number increases, the core region of the microtube experiences more frequent temperature oscillations, while the amplitude of the time-periodic temperature decreases. These findings provide deeper insights into electrokinetic transport phenomena, which hold potential for particle manipulation, enhancement techniques, biochip drug delivery, and biomedical engineering advancements.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Mixing of non-Newtonian fluids in time-periodic cavity flows
    Anderson, PD
    Galaktionov, OS
    Peters, GWM
    van de Vosse, FN
    Meijer, HEH
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2000, 93 (2-3) : 265 - 286
  • [22] Time-periodic non-Newtonian power-law flow across a triangular prism
    Agarwal, Richa
    Dhiman, Amit
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2016, 38 (01) : 227 - 240
  • [23] Time-periodic non-Newtonian power-law flow across a triangular prism
    Richa Agarwal
    Amit Dhiman
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38 : 227 - 240
  • [24] Flow-induced deformation in a microchannel with a non-Newtonian fluid
    Raj, Kiran M.
    Chakraborty, Jeevanjyoti
    DasGupta, Sunando
    Chakraborty, Suman
    BIOMICROFLUIDICS, 2018, 12 (03):
  • [25] Interface dynamics in electroosmotic flow systems with non-Newtonian fluid frontiers
    Chen, Di-Lin
    Liu, Shu-Yan
    Luo, Kang
    Yi, Hong-Liang
    Yang, Chun
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [26] Joule heating effect on a purely electroosmotic flow of non-Newtonian fluids in a slit microchannel
    Sanchez, S.
    Arcos, J.
    Bautista, O.
    Mendez, F.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2013, 192 : 1 - 9
  • [27] Newtonian and non-Newtonian fluid flow through small bifurcations
    Tazi, M.
    European Rheology Conference, 1990,
  • [28] Time-periodic pulse electroosmotic flow of Jeffreys fluids through a microannulus
    Li, Dongsheng
    Ma, Liang
    Dong, Jiayin
    Li, Kun
    OPEN PHYSICS, 2021, 19 (01): : 867 - 876
  • [29] Experimental study of microchannel flow for non-Newtonian fluid in the presence of salt
    Lu, Y. B.
    Tang, G. H.
    Tao, W. Q.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2016, 74 : 91 - 99
  • [30] Analytical solution to optimise the entropy generation in EMHD flow of non-Newtonian fluid through a microchannel
    Siva, Thota
    Jangili, Srinivas
    Kumbhakar, Bidyasagar
    PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (04):