Controlling mechanical properties of laser powder bed fused AlSi10Mg through manipulation of laser scan rotation

被引:0
|
作者
Zhou, Le [1 ]
Yang, Haijian [1 ]
Hyer, Holden [2 ]
机构
[1] Marquette Univ, Dept Mech Engn, Milwaukee, WI 53233 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
来源
MATERIALIA | 2025年 / 39卷
基金
美国国家科学基金会;
关键词
AlSi10Mg; Tensile property; Melt pool; Laser powder bed fusion (LPBF); Scan rotation; MICROSTRUCTURE; STRENGTH; TEXTURE; ALLOY; ANISOTROPY; BEHAVIOR; LAYER;
D O I
10.1016/j.mtla.2025.102340
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microstructure and mechanical properties of laser powder bed fused (LPBF) AlSi10Mg alloys can be controlled by many processing parameters. This study focuses on the scan rotation angle, alpha, between adjacent layers, and establishes the relationship between alpha and tensile behavior of the as-built LPBF-processed AlSi10Mg alloy. Near-full density cubic coupons were manufactured using the same processing parameters but with systematic variation of alpha from 0 degrees to 90 degrees. Microscopic observations and X-ray diffraction analysis showed that differences among various coupons mainly include orientations of the melt pools with respect to the build direction and development of the crystallographic texture. The alpha=0 degrees coupon and alpha=30 degrees coupon showed the highest and lowest texture index, although the overall crystallographic texture was mild. Tensile specimens were manufactured horizontally and vertically using either alpha=0 degrees or alpha=30 degrees, but with various first layer laser direction with respect to the build plate. Notably, the alpha=0 degrees specimen that was tested along the laser scan direction showed the largest yield strength (283 MPa) and highest tensile ductility (10.1 %). Quantitative image analysis and fractography were performed on all specimens. Results showed that the melt pool orientation with respect to the tensile direction affected the tensile behavior across the different specimens. This was closely related to the localized strain distribution within the melt pool and along the melt pool boundary for the different melt pool orientations observed. These results demonstrate that the laser scan rotation angle between layers can be used to fine tune the mechanical properties of LPBF AlSi10Mg alloy.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Effect of heat treatments on microstructure and mechanical properties of AlSi10Mg alloys fabricated by laser powder bed fusion
    Xiaogang Zhu
    Dafan Du
    Anping Dong
    Qinyao Sun
    Jing Sun
    Lijie Guo
    Baode Sun
    Zhendong Chen
    The International Journal of Advanced Manufacturing Technology, 2023, 127 : 4211 - 4223
  • [32] Microstructure and mechanical properties of Cu-modified AlSi10Mg fabricated by Laser-Powder Bed Fusion
    Garmendia, X.
    Chalker, S.
    Bilton, M.
    Sutcliffe, C. J.
    Chalker, P. R.
    MATERIALIA, 2020, 9
  • [33] Multipass Friction Stir Processing of Laser-Powder Bed Fusion AlSi10Mg: Microstructure and Mechanical Properties
    Heidarzadeh, Akbar
    Khorshidi, Mahsa
    Mohammadzadeh, Roghayeh
    Khajeh, Rasoul
    Mofarrehi, Mohammadreza
    Javidani, Mousa
    Chen, X. -Grant
    MATERIALS, 2023, 16 (04)
  • [34] Effect of heat treatments on microstructure and mechanical properties of AlSi10Mg alloys fabricated by laser powder bed fusion
    Zhu, Xiaogang
    Du, Dafan
    Dong, Anping
    Sun, Qinyao
    Sun, Jing
    Guo, Lijie
    Sun, Baode
    Chen, Zhendong
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (9-10): : 4211 - 4223
  • [35] How heterogeneous microstructure determines mechanical behavior of laser powder bed fusion AlSi10Mg
    Song, Lubin
    Zhao, Lv
    Ding, Lipeng
    Zhu, Yaxin
    Liang, Shuang
    Huang, Minsheng
    Simar, Aude
    Li, Zhenhuan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 909
  • [36] Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg
    Zhao, Lv
    Song, Lubin
    Macias, Juan Guillermo Santos
    Zhu, Yaxin
    Huang, Minsheng
    Simar, Aude
    Li, Zhenhuan
    ADDITIVE MANUFACTURING, 2022, 56
  • [37] Improving the mechanical properties of laser powder bed fused AlSi10Mg alloys by eliminating the inevitable micro-voids via hot forging
    Wan, Jie
    Chen, Biao
    Shen, Jianghua
    Kondoh, Katsuyoshi
    Liu, Shuiqing
    Li, Jinshan
    RAPID PROTOTYPING JOURNAL, 2024, 30 (04) : 621 - 632
  • [38] Mechanical and Physical Properties of AlSi10Mg Processed through Selective Laser Melting
    Raus, A. A.
    Wahab, M. S.
    Ibrahim, M.
    Kamarudin, K.
    Ahmed, Aqeel
    Shamsudin, S.
    7TH INTERNATIONAL CONFERENCE ON MECHANICAL AND MANUFACTURING ENGINEERING (ICME'16), 2017, 1831
  • [39] Degradation of AlSi10Mg powder during laser based powder bed fusion processing
    Raza, Ahmad
    Fiegl, Tobias
    Hanif, Imran
    MarkstrOm, Andreas
    Franke, Martin
    Koerner, Carolin
    Hryha, Eduard
    MATERIALS & DESIGN, 2021, 198
  • [40] Multiple, comparative heat treatment and aging schedules for controlling the microstructures and mechanical properties of laser powder bed fusion fabricated AlSi10Mg alloy
    Merino, Jorge
    Ruvalcaba, Bryan
    Varela, Jaime
    Arrieta, Edel
    Murr, Lawrence E.
    Wicker, Ryan B.
    Benedict, Mark
    Medina, Francisco
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 13 : 669 - 685