Unveiling the Reactivity of Li1+x Al x Ti2-x (PO4)3 with Lithium Salts to Reduce Its Sintering Temperature

被引:0
|
作者
Guilleux, Morgan [1 ]
Gervais, Christel [1 ]
Diogo, Cristina Coelho [2 ]
Laberty-Robert, Christel [1 ,3 ]
Perez, Arnaud J. [1 ,3 ]
机构
[1] Sorbonne Univ, CNRS, Lab Chim Matie`re Condenseee Paris LCMCP, F-75005 Paris, France
[2] Sorbonne Univ, Federat Chim Mat Paris Ctr FCMAT, CNRS, FR 2482, F-75005 Paris, France
[3] Re?seau Stockage Electrochim Energie RS2E, FR 3459, F-80039 Amiens, France
来源
ACS APPLIED ENERGY MATERIALS | 2025年 / 8卷 / 02期
关键词
solid electrolyte; ionic conductor; ceramic; sintering aid; LATP; chemical reactivity; IONIC-CONDUCTIVITY; NEUTRON-DIFFRACTION; SOLID ELECTROLYTES; GLASS-CERAMICS; LITI2(PO4)(3); CONDUCTORS; NMR; MICROSTRUCTURE; OPTIMIZATION; LITIOPO4;
D O I
10.1021/acsaem.4c02668
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NaSICON-type materials, such as Li1.3Al0.3Ti1.7(PO4)3 (LATP), are considered promising solid electrolytes due to their good total ionic conductivity of 1 x 10-4 S cm-1 at room temperature and their stability at high potentials (4.1 V vs Li/Li+). However, decreasing their densification temperature is crucial for their integration into all-solid-state batteries (ASSBs). The minimum required heat treatment temperature for densification of LATP is 900 degrees C, which is incompatible with its integration in the composite electrode of ASSBs due to reactivity with the positive electrode material (cathode). To lower this temperature, lithium salts are often proposed as sintering aids to promote liquid-phase sintering. However, the systematic formation of impurities, such as LiTiOPO4 and Li4P2O7, suggests that chemical reactivity plays a significant role in LATP densification. In this work, the chemical reactivity mechanism of lithium salts with LATP during densification and sintering was investigated. Various characterization techniques, including in situ and ex situ X-ray diffraction, TGA-DTA-MS, DSC, ex situ Raman and solid-state NMR spectroscopy (7Li, 27Al, and 31P), were employed to elucidate the mechanism. The formation of intermediate decomposition products Li3PO4 and TiO2 is identified for the first time via the reactivity of the lithium salt with LATP prior to the melting temperature of the salt. These intermediates subsequently react with LATP at a higher temperature, resulting in the formation of final impurities LiTiOPO4 and Li4P2O7. This unified mechanism provides important insights on the enhanced densification of LATP at lower temperatures with the use of Li salt sintering aids.
引用
收藏
页码:1167 / 1178
页数:12
相关论文
共 50 条
  • [31] Progress and perspective of Li1+ xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries
    Yang, Ke
    Chen, Likun
    Ma, Jiabin
    He, Yan-Bing
    Kang, Feiyu
    INFOMAT, 2021, 3 (11) : 1195 - 1217
  • [32] High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5)
    Arbi, K.
    Bucheli, W.
    Jimenez, R.
    Sanz, J.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) : 1477 - 1484
  • [33] Phase transformations and cation mobility in Li3-2x Nb x In2-x (PO4)3 complex phosphates
    Shaikhlislamova, A. R.
    Stenina, I. A.
    Zhuravlev, N. A.
    Arkhangel'skii, I. V.
    Rebrov, A. I.
    Yaroslavtsev, A. B.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2009, 54 (04) : 500 - 504
  • [34] High lithium ionic conductivity in the Li1+xAlxGeyTi2-x-y(PO4)3 NASICON series
    Maldonado-Manso, P
    Losilla, ER
    Martínez-Lara, M
    Aranda, MAG
    Bruque, S
    Mouahid, FE
    Zahir, M
    CHEMISTRY OF MATERIALS, 2003, 15 (09) : 1879 - 1885
  • [35] Role of Lithium Excess and Doping in Li1+xTi2-xMnx(PO4)3 (0.00 ≤ x ≤ 0.10)
    Capsoni, Doretta
    Bini, Marcella
    Ferrari, Stefania
    Massarotti, Vincenzo
    Mozzati, Maria Cristina
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (01): : 1244 - 1250
  • [36] Conductivity and electrochemical behavior of Li1-x Fe1-2x (MIIMIII) x PO4 with olivine structure
    Kapaev, Roman
    Novikova, Svetlana
    Kulova, Tatiana
    Skundin, Alexander
    Yaroslavtsev, Andrey
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (09) : 2793 - 2801
  • [37] Synthesis and properties of lithium ion conductors Li3-2x(Sc1-xZrx)(2)(PO4)(3)
    Sato, M
    Suzuki, T
    Yoshida, K
    Uematsu, K
    Toda, K
    Ye, ZG
    JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 250 (1-2) : 510 - 514
  • [38] Influence of excess lithium and sintering on the conductivity of Li1.3Al0.3Ti1.7(PO4)3
    Li, Ziying
    Zhao, Xiujian
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (04)
  • [39] Lithium conducting solid electrolyte Li1+xAlxGe2 - x(PO4)3 membrane for aqueous lithium air battery
    Safanama, Dorsasadat
    Damiano, Davide
    Rao, Rayavarapu Prasada
    Adams, Stefan
    SOLID STATE IONICS, 2014, 262 : 211 - 215
  • [40] Structure and electrochemical study of Li2xMn(1-@x)TiCr(PO4)3 (x = 0 -@ 0.50)
    Aatiq, A.
    Delmas, C.
    El Jazouli, A.
    Gravereau, P.
    Annales de Chimie: Science des Materiaux, 23 (1-2):