Predicting Hanoi House Prices Using Machine Learning

被引:0
|
作者
Nguyen Hong Van [1 ]
Vu Thu Diep [2 ]
Nguyen Quang Thang [1 ]
Phan Thanh Ngoc [3 ]
Phan Duy Hung [1 ]
机构
[1] FPT Univ, Hanoi, Vietnam
[2] HaNoi Univ Sci & Technol, Hanoi, Vietnam
[3] VNU Univ Engn & Technol, Hanoi, Vietnam
关键词
Housing prices; Linear regression; SVM; Decision tree; Random forest regression;
D O I
10.1007/978-981-97-3299-9_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, predicting house prices has long been a fundamental challenge in the real estate industry and finance. Machine learning methods are utilized to uncover valuable models beneficial to both home buyers and sellers. This study is to predict house prices in Hanoi using data from the website batdongsan.com and applying different algorithms such as linear regression, Support Vector Machine, decision tree, and random forest. Many factors affect house prices, including physical factors such as area and location, as well as economic factors. In this paper, we use root mean squared error, mean absolute error, and R-squared as measures of model effectiveness. From there, we utilize and contrast these metrics to identify the model that exhibits the highest level of accuracy, contributing to a deeper understanding of the Hanoi real estate market.
引用
收藏
页码:375 / 384
页数:10
相关论文
共 50 条
  • [41] Deep Learning Vs. Machine Learning in Predicting the Future Trend of Stock Market Prices
    Ghasemieh, Alireza
    Kashef, Rasha
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 3429 - 3435
  • [42] The Predictability of House Prices: "Human Against Machine"
    Birkeland, Kristoffer B.
    D'Silva, Allan D.
    Fuss, Roland
    Oust, Are
    INTERNATIONAL REAL ESTATE REVIEW, 2021, 24 (02): : 139 - 183
  • [43] The role of cryptocurrencies in predicting oil prices pre and during COVID-19 pandemic using machine learning
    Ibrahim, Bassam A.
    Elamer, Ahmed A.
    Abdou, Hussein A.
    ANNALS OF OPERATIONS RESEARCH, 2022, 345 (2) : 909 - 952
  • [44] Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques
    Mallqui, Dennys C. A.
    Fernandes, Ricardo A. S.
    APPLIED SOFT COMPUTING, 2019, 75 : 596 - 606
  • [45] Predicting Corporate Bond Prices in Japan Using a Support Vector Machine
    Jotaki, Hiroaki
    Yamashita, Yasuo
    Takahashi, Hiroshi
    NINTH INTERNATIONAL CONFERENCE ON INFORMATION, PROCESS, AND KNOWLEDGE MANAGEMENT (EKNOW 2017), 2017, : 13 - 19
  • [46] Predicting Stock prices using Ensemble Learning and Sentiment Analysis
    Pasupulety, Ujjwal
    Anees, Aiman Abdullah
    Anmol, Subham
    Mohan, Biju R.
    2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 215 - 222
  • [47] Predicting Happiness Index Using Machine Learning
    Akanbi, Kemi
    Jones, Yeboah
    Oluwadare, Sunkanmi
    Nti, Isaac Kofi
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [48] Predicting Enthalpy of Combustion Using Machine Learning
    Jameel, Abdul Gani Abdul
    Al-Muslem, Ali
    Ahmad, Nabeel
    Alquaity, Awad B. S.
    Zahid, Umer
    Ahmed, Usama
    PROCESSES, 2022, 10 (11)
  • [49] Predicting glycosylation stereoselectivity using machine learning
    Moon, Sooyeon
    Chatterjee, Sourav
    Seeberger, Peter H.
    Gilmore, Kerry
    CHEMICAL SCIENCE, 2021, 12 (08) : 2931 - 2939
  • [50] Using machine learning for predicting outcomes in ACLF
    Tonon, Marta
    Moreau, Richard
    LIVER INTERNATIONAL, 2022, 42 (11) : 2354 - 2355