Tracking Control With Adjustable Trajectory Envelope for Cable-Driven Robots

被引:0
|
作者
Sun, Haining [1 ,2 ]
Zhang, Rongqiao [3 ]
Ji, Ruihang [4 ,5 ]
Tang, Xiaoqiang [3 ]
Ge, Shuzhi Sam [4 ,5 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[2] ASTAR, Singapore Inst Mfg Technol, Singapore 138634, Singapore
[3] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol, Beijing 100084, Peoples R China
[4] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[5] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore 117583, Singapore
基金
中国国家自然科学基金;
关键词
Trajectory; Trajectory tracking; Torque; Target tracking; PD control; Motors; Vectors; Power cables; Jacobian matrices; Germanium; Cable-driven robots (CDRs); constrained control force; tracking control; DYNAMIC SURFACE CONTROL; UNCERTAIN NONLINEAR-SYSTEMS; PARALLEL ROBOTS; VIBRATION CONTROL;
D O I
10.1109/TIE.2024.3503591
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In industrial applications, insufficient motor torque and overload issues can limit the control force in cable-driven robots (CDRs), affecting the stability and robustness of trajectory tracking control. This work presents a specialized tracking controller to achieve stable trajectory tracking under constrained control forces. The controller incorporates a trajectory envelope system that actively adjusts the permissible range of the actual trajectory. When control forces approach their upper limits, the envelope automatically expands and reduces the precision requirement for trajectory tracking. The controller then ensures that the actual trajectory remains within the designated permissible boundaries, thereby maintaining controllable trajectory tracking. The stability of the control system is validated using the Lyapunov method. Experimental validations on CDRs with one, two, and four cables are conducted. Both simulations and experiments confirm the effectiveness of the proposed tracking controller under conditions of constrained motor output torque.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A New Practical Robust Adaptive Control of Cable-driven Robots
    Wang, Yaoyao
    Yang, Haoqin
    Deng, Wenxiang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (08) : 2685 - 2697
  • [32] Underactuated Cable-Driven Robots: Machine, Control and Suspended Bodies
    Gosselin, Clement
    Lefrancois, Simon
    Zoso, Nathaniel
    BRAIN, BODY AND MACHINE, 2010, 83 : 311 - 323
  • [33] Practical robust control of cable-driven robots with feedforward compensation
    Wang, Yaoyao
    Liu, Lufang
    Chen, Jiawang
    Ju, Feng
    Chen, Bai
    Wu, Hongtao
    ADVANCES IN ENGINEERING SOFTWARE, 2020, 145
  • [34] A Review on Cable-driven Parallel Robots
    Qian, Sen
    Zi, Bin
    Shang, Wei-Wei
    Xu, Qing-Song
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2018, 31 (01)
  • [35] Rest-to-Rest Trajectory Planning for Underactuated Cable-Driven Parallel Robots
    Ida, Edoardo
    Bruckmann, Tobias
    Carricato, Marco
    IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (06) : 1338 - 1351
  • [36] On the Redundancy of Cable-Driven Parallel Robots
    Merlet, J. -P.
    NEW TRENDS IN MECHANISM AND MACHINE SCIENCE: FROM FUNDAMENTALS TO INDUSTRIAL APPLICATIONS, 2015, 24 : 31 - 39
  • [37] Trajectory planning of lower limb rehabilitation action for cable-driven rehabilitation robots
    Li, Yang
    Cao, Dianguo
    Wang, Jinqiang
    Wu, Yuqiang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023, 237 (09) : 2171 - 2183
  • [38] A New Practical Robust Adaptive Control of Cable-driven Robots
    Yaoyao Wang
    Haoqin Yang
    Wenxiang Deng
    International Journal of Control, Automation and Systems, 2023, 21 : 2685 - 2697
  • [39] Some interactive control modes for planar cable-driven robots
    Zaatri, Abdelouahab
    Bouchemal, Billel
    WORLD JOURNAL OF ENGINEERING, 2013, 10 (05) : 485 - 489
  • [40] A Review on Cable-driven Parallel Robots
    Sen Qian
    Bin Zi
    Wei-Wei Shang
    Qing-Song Xu
    Chinese Journal of Mechanical Engineering, 2018, 31 (04) : 37 - 47