Surface Gate-Defined Quantum Dots in MoS2 with Bi Contacts

被引:0
|
作者
Tataka, Riku [1 ,2 ]
Sharma, Alka [3 ]
Shinozaki, Motoya [3 ]
Johmen, Tomoya [1 ,2 ]
Kumasaka, Takeshi [1 ]
Chen, Yong P. [3 ,4 ,5 ,6 ,7 ,8 ,9 ]
Otsuka, Tomohiro [1 ,2 ,3 ,10 ,11 ]
机构
[1] Tohoku Univ, Res Inst Elect Commun, Sendai 9808577, Japan
[2] Tohoku Univ, Grad Sch Engn, Sendai 9808579, Japan
[3] Tohoku Univ, WPI Adv Inst Mat Res, Sendai 9808577, Japan
[4] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[5] Purdue Univ, Purdue Quantum Sci & Engn Inst, W Lafayette, IN 47907 USA
[6] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[7] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[8] Aarhus Univ, Villum Ctr Hybrid Quantum Mat & Devices, DK-8000 Aarhus C, Denmark
[9] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[10] Tohoku Univ, Ctr Sci & Innovat Spintron, Sendai 9808577, Japan
[11] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama 3510198, Japan
关键词
MONOLAYER MOS2; SPIN; TRANSISTORS;
D O I
10.7566/JPSJ.93.094601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transition-metal dichalcogenides (TMDCs) are promising materials for nano and quantum devices, with performance dependent on electrical contacts and gate electrodes at cryogenic temperatures. In this study, we utilized semimetal bismuth as the contact metal to fabricate two types of devices based on MoS2-Bi: field-effect transistors (FETs) and quantum dot devices. We observed linear current-voltage characteristics in the FET devices at temperatures of 4.2 and 0.4 K, within the range of -0.03 to 0.03 V, essential for quantum devices. For the MoS2 quantum dot device, we utilized intrinsic Schottky barriers between MoS2 and gold as gate electrodes to form and control the quantum dots. Coulomb diamonds were observed in the MoS2 devices at temperature of 0.4 K, with extracted parameters matching our device design. Our simplified fabrication process eliminates the need for additional fabricate gate insulators steps, enhancing design flexibility and fabrication possibilities for advanced quantum devices, including vertically integrated systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Gate-defined quantum dots in intrinsic silicon
    Angus, Susan J.
    Ferguson, Andrew J.
    Dzurak, Andrew S.
    Clark, Robert G.
    NANO LETTERS, 2007, 7 (07) : 2051 - 2055
  • [2] Gate-defined quantum dots on carbon nanotubes
    Biercuk, MJ
    Garaj, S
    Mason, N
    Chow, JM
    Marcus, CM
    NANO LETTERS, 2005, 5 (07) : 1267 - 1271
  • [3] Quantum computation on gate-defined semiconductor quantum dots
    Li HaiOu
    Yao Bing
    Tu Tao
    Guo GuoPing
    CHINESE SCIENCE BULLETIN, 2012, 57 (16): : 1919 - 1924
  • [4] Quantum computation on gate-defined semiconductor quantum dots
    LI HaiOu
    Science Bulletin, 2012, (16) : 1919 - 1924
  • [5] Gate-defined quantum point contacts in a germanium quantum well
    Gao, Han
    Kong, Zhen-Zhen
    Zhang, Po
    Luo, Yi
    Su, Haitian
    Liu, Xiao-Fei
    Wang, Gui-Lei
    Wang, Ji-Yin
    Xu, H. Q.
    NANOSCALE, 2024, 16 (21) : 10333 - 10339
  • [6] Electron confinement in graphene with gate-defined quantum dots
    Fehske, Holger
    Hager, Georg
    Pieper, Andreas
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (08): : 1868 - 1871
  • [7] Electron dynamics in graphene with gate-defined quantum dots
    Pieper, A.
    Heinisch, R. L.
    Fehske, H.
    EPL, 2013, 104 (04)
  • [8] Bell inequality violation in gate-defined quantum dots
    Paul Steinacker
    Tuomo Tanttu
    Wee Han Lim
    Nard Dumoulin Stuyck
    MengKe Feng
    Santiago Serrano
    Ensar Vahapoglu
    Rocky Y. Su
    Jonathan Y. Huang
    Cameron Jones
    Kohei M. Itoh
    Fay E. Hudson
    Christopher C. Escott
    Andrea Morello
    Andre Saraiva
    Chih Hwan Yang
    Andrew S. Dzurak
    Arne Laucht
    Nature Communications, 16 (1)
  • [9] Gate-defined coupled quantum dots in topological insulators
    Ertler, Christian
    Raith, Martin
    Fabian, Jaroslav
    PHYSICAL REVIEW B, 2014, 89 (07):
  • [10] Electrostatic potential shape of gate-defined quantum point contacts
    Geier, M.
    Freudenfeld, J.
    Silva, J. T.
    Umansky, V
    Reuter, D.
    Wieck, A. D.
    Brouwer, P. W.
    Ludwig, S.
    PHYSICAL REVIEW B, 2020, 101 (16)