Metrizable spaces homeomorphic to the hyperspace of nonblockers of singletons of a continuum

被引:0
|
作者
Maya, David [1 ]
Orozco-Zitli, Fernando [1 ]
Rodriguez-Anaya, Emiliano [1 ]
机构
[1] Univ Autonoma Estado Mexico, Fac Ciencias, Inst Literario 100,Col Ctr, Toluca 50000, Estado De Mexic, Mexico
关键词
Continuum; Nonblocker set; Semi-boundary;
D O I
10.1016/j.topol.2024.109151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A continuum is a nondegenerate compact connected metric space. The hyperspace of all nonempty closed subsets of a continuum X topologized by the Hausdorff metric is denoted by 2(X). Given a continuum X , the subspace NB(F-1(X )) of 2X consists of all elements A is an element of 2(X) - {X} such that for each x is an element of X - A , the union of all subcontinua of X containing x and contained in X - A is a dense subset of X . The members of NB(F-1(X )) are called nonblocker subsets of the singletons of the continuum X . In this paper, we show that each proper nonempty open subset U of a compact metric space can be embedded in a continuum X such that U and the hyperspace of nonblocker subsets of X are homeomorphic. This answers a question posed by J. Camargo, F. Capulin, E. Castaneda-Alvarado and D. Maya. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Regular capacities on metrizable spaces
    Cherkovskyi, T. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2014, 6 (01) : 166 - 176
  • [32] OPTIMAL METRICS ON METRIZABLE SPACES
    JANOS, L
    ARCHIV DER MATHEMATIK, 1971, 22 (06) : 660 - &
  • [33] The hyperspace of connected boundary subcontinua of a continuum
    Escobedo, Raul
    Ordonez, Norberto
    Quinones-Estrella, Rusell-Aaron
    Villanueva, Hugo
    TOPOLOGY AND ITS APPLICATIONS, 2021, 290
  • [34] SOBOLEV SPACES ON METRIZABLE GROUPS
    Gorka, Przemyslaw
    Kostrzewa, Tomasz
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (02) : 837 - 849
  • [35] THE NUMBER OF METRIZABLE-SPACES
    HODEL, RE
    FUNDAMENTA MATHEMATICAE, 1983, 115 (02) : 127 - 141
  • [36] METRIZABLE GENERALIZED (LF)-SPACES
    SAXON, SA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A143 - A143
  • [37] RECONSTRUCTING COMPACT METRIZABLE SPACES
    Gartside, Paul
    Pitz, Max F.
    Suabedissen, Rolf
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 429 - 443
  • [38] Products of Michael spaces and completely metrizable spaces
    Burke, DK
    Pol, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (05) : 1535 - 1544
  • [39] SPACES UNIFORMLY HOMEOMORPHIC TO HILBERTIAN FRECHET SPACES
    MANKIEWICZ, P
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (05): : 529 - 531
  • [40] A hyperspace completion for semiuniform convergence spaces and related hyperspace structures
    Preuss, G
    CATEGORICAL STRUCTURES AND THEIR APPLICATIONS, 2004, : 237 - 249