A CFD-based multi-fidelity surrogate model for predicting indoor airflow parameters using sensor readings

被引:0
|
作者
Morozova, Nina [1 ]
Trias, Francesc Xavier [1 ]
Vanovskiy, Vladimir [2 ]
Oliet, Carles [1 ]
Burnaev, Evgeny [2 ]
机构
[1] Univ Politecn Cataluna, Heat & Mass Transfer Technol Ctr CTTC, ESEIAAT, BarcelonaTech UPC, C Colom 11, Terrassa 08222, Barcelona, Spain
[2] Skolkovo Inst Sci & Technol, Bolshoy Blvd 30,Bldg 1, Moscow 121205, Russia
关键词
Computational fluid dynamics; Indoor airflow prediction; Machine learning; Mixed convection; Multi-fidelity; Surrogate models; MULTIOBJECTIVE OPTIMIZATION; VENTILATION; BUILDINGS; SIMULATION; TURBULENCE; DESIGN;
D O I
10.1016/j.buildenv.2025.112533
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, we introduce a multi-fidelity machine learning surrogate model that predicts comfort-related flow parameters in a benchmark scenario of a ventilated room with a heated floor. The model leverages both coarse- and fine-grid CFD simulations employing a LES turbulence model. To build the dataset, we varied parameters such as the room's width aspect ratio, inlet flow velocity, and the heated floor's temperature. The surrogate model inputs temperature and velocity magnitude readings from two specific locations, chosen to simulate real sensor placements, thus enhancing its applicability in practical scenarios. The model's outputs include the average Nusselt number on the heated wall, the jet separation point, average kinetic energy, average enstrophy, and average temperature. We explore three multi-fidelity approaches: Gaussian process regression (GPR) using combined high- and low-fidelity data without differentiation, GPR with linear correction for the low-fidelity data, and multi-fidelity GPR or co-kriging. These methods are evaluated for their computational cost and accuracy against GPR models relying solely on high-fidelity or low-fidelity data. All multi-fidelity approaches effectively reduce the computational expense of dataset creation while maintaining required accuracy levels. Among them, co-kriging offers the best balance between computational cost and accuracy.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A multi-fidelity residual neural network based surrogate model for mechanical behaviour of structured sand
    Zhou, Zhihao
    Yin, Zhen-Yu
    He, Geng-Fu
    Jiang, Mingjing
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2024, 48 (12) : 3141 - 3163
  • [32] A multi-fidelity surrogate model based on extreme support vector regression: fusing different fidelity data for engineering design
    Shi, Mao-Lin
    Lv, Liye
    Xu, Lizhang
    ENGINEERING COMPUTATIONS, 2023, 40 (02) : 473 - 493
  • [33] A conservative multi-fidelity surrogate model-based robust optimization method for simulation-based optimization
    Hu, Jiexiang
    Zhang, Lili
    Lin, Quan
    Cheng, Meng
    Zhou, Qi
    Liu, Huaping
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (04) : 2525 - 2551
  • [34] A conservative multi-fidelity surrogate model-based robust optimization method for simulation-based optimization
    Jiexiang Hu
    Lili Zhang
    Quan Lin
    Meng Cheng
    Qi Zhou
    Huaping Liu
    Structural and Multidisciplinary Optimization, 2021, 64 : 2525 - 2551
  • [35] Seismic reliability analysis using a multi-fidelity surrogate model: Example of base-isolated buildings
    Skandalos, Konstantinos
    Chakraborty, Souvik
    Tesfamariam, Solomon
    STRUCTURAL SAFETY, 2022, 97
  • [36] AMFGP: An active learning reliability analysis method based on multi-fidelity Gaussian process surrogate model
    Lu, Ning
    Li, Yan-Feng
    Mi, Jinhua
    Huang, Hong-Zhong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 246
  • [37] Multi-fidelity deep neural network surrogate model for aerodynamic shape prediction based on multi-task learning
    Wu, Pin
    Liu, Zhitao
    Zhou, Zhu
    Song, Chao
    2024 3RD INTERNATIONAL CONFERENCE ON ENERGY AND POWER ENGINEERING, CONTROL ENGINEERING, EPECE 2024, 2024, : 137 - 142
  • [38] Rotor Multidisciplinary Optimization of High Speed PMSM Based on Multi-Fidelity Surrogate Model and Gradient Sequential Sampling
    Xie, Bingchuan
    Zhang, Yue
    Xu, Zhenyao
    Zhang, Fengge
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2023, 38 (02) : 859 - 868
  • [39] Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design
    Ariyarit, Atthaphon
    Sugiura, Masahiko
    Tanabe, Yasutada
    Kanazaki, Masahiro
    ENGINEERING OPTIMIZATION, 2018, 50 (06) : 1016 - 1040
  • [40] A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models
    Song, Xueguan
    Lv, Liye
    Sun, Wei
    Zhang, Jie
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (03) : 965 - 981