From sampling to simulating: Single-cell multiomics in systems pathophysiological modeling

被引:0
|
作者
Manchel, Alexandra [1 ]
Gee, Michelle [1 ,2 ]
Vadigepalli, Rajanikanth [1 ]
机构
[1] Thomas Jefferson Univ, Daniel Baugh Inst Funct Genom Computat Biol, Dept Pathol & Genom Med, Philadelphia, PA 19144 USA
[2] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
GENOME-WIDE EXPRESSION; MASS-SPECTROMETRY; GENE-EXPRESSION; SEQ; NETWORK; RECONSTRUCTION; PROTEOMICS; PROTEINS; DATABASE; OMICS;
D O I
10.1016/j.isci.2024.111322
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As single-cell omics data sampling and acquisition methods have accumulated at an unprecedented rate, various data analysis pipelines have been developed for the inference of cell types, cell states and their distribution, state transitions, state trajectories, and state interactions. This presents a new opportunity in which single-cell omics data can be utilized to generate high-resolution, high-fidelity computational models. In this review, we discuss how single-cell omics data can be used to build computational models to simulate biological systems at various scales. We propose that single-cell data can be integrated with physiological information to generate organ-specific models, which can then be assembled to generate multi-organ systems pathophysiological models. Finally, we discuss how generic multi-organ models can be brought to the patient-specific level thus permitting their use in the clinical setting.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Comparative Analysis of Fusion Techniques for Integrating Single-cell Multiomics Datasets
    Koca, Mehmet Burak
    Sevilgen, Fatih Erdogan
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [42] MultiSC: a deep learning pipeline for analyzing multiomics single-cell data
    Lin, Xiang
    Jiang, Siqi
    Gao, Le
    Wei, Zhi
    Wang, Junwen
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [43] A single-cell multiomics profile of Fontan-associated liver disease
    Ray, Katrina
    NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2024, 21 (07) : 462 - 462
  • [44] Single-cell multiomics to probe relationships between histone modifications and transcription
    Andrew C. Adey
    Nature Methods, 2021, 18 : 602 - 603
  • [45] Single-cell multiomics to probe relationships between histone modifications and transcription
    Adey, Andrew C.
    NATURE METHODS, 2021, 18 (06) : 602 - 603
  • [46] Single-cell multiomics identifies formation of immunologic memory in CTCL - transition from blood to skin
    Roggo, A.
    Ghosh, A.
    Gueguen, P.
    Ramelyte, E.
    Levesque, M.
    Tastanova, A.
    Dummer, R.
    EUROPEAN JOURNAL OF CANCER, 2024, 211 : S63 - S64
  • [47] Twin Scholarships of Glycomedicine and Precision Medicine in Times of Single-Cell Multiomics
    Oh, Seungyoul
    Cao, Weijie
    Song, Manshu
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2024, 28 (07) : 319 - 323
  • [48] Advances in mass spectrometry-enabled multiomics at single-cell resolution
    Kumar, Rashmi
    Zemaitis, Kevin J.
    Fulcher, James M.
    Pasa-Tolic, Ljiljana
    CURRENT OPINION IN BIOTECHNOLOGY, 2024, 87
  • [49] Single cell multiomics systems biology for molecular toxicity
    Diamante, Graciel
    Ha, Sung Min
    Wijaya, Darren
    Yang, Xia
    CURRENT OPINION IN TOXICOLOGY, 2024, 39
  • [50] Single-cell multiomics reveals a gene regulatory circuit driving leukemia cell differentiation
    Tian, Xin
    Zhang, Liuqingqing
    Xiang, Guiqiyang
    Tang, Yijia
    Zhu, Ping
    Yu, Shuting
    Jiang, Fangying
    Wang, Shuai
    Wang, Jinzeng
    Dai, Yao
    Zheng, Desheng
    Wang, Jianbiao
    Weng, Xiangqin
    Wang, Shengyue
    Tan, Yun
    Liu, Feng
    ONCOGENE, 2025,