A Thickened flame model extension for the simulation of lean hydrogen-air explosions in confined environments

被引:0
|
作者
Hok, Jean-Jacques [1 ]
Dounia, Omar [1 ]
Vermorel, Olivier [1 ]
机构
[1] CERFACS, Ctr Europeen Rech & Format Avancee Calcul Sci, 42 Av Gaspard Coriolis, F-31057 Toulouse, France
关键词
Lean hydrogen-air flames; Confined explosions; Stretch effects; Thermo-diffusive instabilities; Subgrid modeling; LARGE-EDDY SIMULATION; DEFLAGRATING FLAMES; SURFACE-DENSITY; PREMIXED FLAMES; DETONATION TRANSITION; SELF-ACCELERATION; COMBUSTION; PROPAGATION; OBSTACLES; LES;
D O I
10.1016/j.combustflame.2025.114070
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper investigates the coupling between wall confinement and flame front instabilities during lean H2-air deflagrations in tubes. Flame-Resolved Simulations (FRS) show that confinement significantly affects flame behavior: (1) in narrow tubes, confinement effects dominate over flame instabilities and flame acceleration is driven dominantly by the finger flame mechanism, (2) while in wider tubes, instabilities have more space to develop, thereby enhancing their contribution to flame acceleration. In a large-scale modeling perspective, the paper delves into ways to reproduce the complex interaction between confinement and flame front instabilities using coarser meshes. Strong limitations of the Thickened Flame (TF) model, a classical approach for the Large Eddy Simulations (LES) for reactive flows, are first highlighted. The inherent inability of the TF approach to reproduce the specificities of lean H2-air combustion is solved by employing the Thermo-Diffusive-Stretched- Thickened Flame (TD-S-TF) model initially developed in Hok et al. (2024) and extending it to account for confinement effects: the model incorporates a time-dependent efficiency function mimicking the effects of subgrid thermo-diffusive instabilities on flame acceleration, and saturated to account for the limited instability growth in confined spaces. Although such saturation is only demonstrated for the simple tube configuration, this strategy solves issues encountered with the TF model, thereby paving the way for accurate confined H2-air explosions simulations.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Combustion dynamics of multi-element lean-premixed hydrogen-air flame ensemble
    Kang, Hyebin
    Kim, Kyu Tae
    COMBUSTION AND FLAME, 2021, 233
  • [32] Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture
    Heidari, A.
    Wen, J. X.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (36) : 21317 - 21327
  • [33] FLAME PROPAGATION IN HYDROGEN-AIR MIXTURES IN A TUBE
    TSARICHENKO, SG
    SHEBEKO, YN
    TRUNEV, AV
    ZAITSEV, AA
    KAPLIN, AY
    COMBUSTION EXPLOSION AND SHOCK WAVES, 1993, 29 (06) : 674 - 678
  • [34] Pressure oscillation with destructive effect of flame propagation of a stoichiometric hydrogen-air mixture in a confined space
    Wei, Haiqiiao
    Zhao, Jianfu
    Zhou, Lei
    Xu, Zailong
    Gao, Dongzhi
    JOURNAL OF HAZARDOUS MATERIALS, 2018, 344 : 1025 - 1033
  • [35] Suppression of hydrogen-air explosions by isobutene with special molecular structure
    Shang, Sheng
    Bi, Mingshu
    Zhang, Kai
    Li, Yanchao
    Gao, Zehua
    Zhang, Zongling
    Li, Xiaolin
    Zhang, Changshuai
    Gao, Wei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (61) : 25864 - 25875
  • [36] PIV-measurements of reactant flow in hydrogen-air explosions
    Vaagsaether, K.
    Gaathaug, A. V.
    Bjerketvedt, D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (17) : 8799 - 8806
  • [37] Experiments on the effects of venting and nitrogen inerting on hydrogen-air explosions
    Zhang, Kai
    Du, Saifeng
    Chen, Hao
    Guo, Jin
    Wang, Jingui
    Hong, Yidu
    Baozha Yu Chongji/Explosion and Shock Waves, 2022, 42 (12):
  • [38] ASYMPTOTIC ANALYSES OF STOICHIOMETRIC AND LEAN HYDROGEN-AIR FLAMES
    SESHADRI, K
    PETERS, N
    WILLIAMS, FA
    COMBUSTION AND FLAME, 1994, 96 (04) : 407 - 427
  • [39] External explosions of vented hydrogen-air deflagrations in a cubic vessel
    Rui, Shengchao
    Wang, Changjian
    Luo, Xinjiao
    Jing, Rulin
    Li, Quan
    FUEL, 2021, 301
  • [40] Asymptotic analyses of stoichiometric and lean hydrogen-air flames
    Seshadri, K.
    Peters, N.
    Williams, F.A.
    Combustion and Flame, 1994, 96 (04): : 407 - 427