BTS U-Net: A data-driven approach to brain tumor segmentation through deep learning

被引:0
|
作者
Aumente-Maestro, Carlos [1 ]
Gonzalez, David Rodriguez [2 ]
Martinez-Rego, David [3 ]
Remeseiro, Beatriz [1 ]
机构
[1] Univ Oviedo, Artificial Intelligence Ctr, Gijon 33204, Spain
[2] CSIC, Inst Fis Cantabria, Adv Computat & E Sci, Santander 39005, Spain
[3] DataSpartan, London EC2Y 9ST, England
关键词
Brain tumor segmentation; Brain tumor classification; Magnetic resonance imaging; Convolutional networks;
D O I
10.1016/j.bspc.2025.107490
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gliomas, the most prevalent primary brain tumors, can be classified, depending on their characteristics, into Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). Early detection and treatment are vital to improve the patient's prognosis, especially in HGGs, the most aggressive ones. Manually annotating MRIs to locate gliomas is a time-consuming task, leading to the development of artificial intelligence (AI) techniques that could significantly speedup and automate the process. In an effort to promote green AI, this research work proposes BTS U-Net, a novel lightweight architecture designed to streamline glioma segmentation in MRIs. We provide a comprehensive comparative analysis between BTS U-Net and four established architectures widely used in biomedical image segmentation. BTS U-Net reduces training time by 11.3% to 79.2% compared to conventional models while maintaining competitive performance, making it a more sustainable option. Additionally, it achieved comparable performance to the top-performing network among the baseline models on the BraTS 2020 dataset, with DICE scores of 0.811, 0.878, and 0.908 on the test subset and 0.790, 0.841, and 0.901 on the validation cohort for the regions enhancing tumor, tumor core, and whole tumor, respectively. Furthermore, an original analysis of the MRIs and the segmentation masks is presented, demonstrating statistical differences between HGG and LGG. Finally, we also explored the influence of the tumor type on the segmentation performance. The results suggest that a sequential two-step methodology, starting with tumor type classification followed by segmentation, could optimize performance. Therefore, the experimentation not only demonstrates the BTS U-Net's capability to balance efficiency with accuracy in glioma segmentation but also lays the groundwork for future exploration of tailored strategies based on glioma grading.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Brain tumor segmentation using U-Net in conjunction with EfficientNet
    Lin, Shu-You
    Lin, Chun-Ling
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [22] Modified U-Net for Automatic Brain Tumor Regions Segmentation
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [23] Hybrid Pyramid U-Net Model for Brain Tumor Segmentation
    Kong, Xiangmao
    Sun, Guoxia
    Wu, Qiang
    Liu, Ju
    Lin, Fengming
    INTELLIGENT INFORMATION PROCESSING IX, 2018, 538 : 346 - 355
  • [24] Path aggregation U-Net model for brain tumor segmentation
    Fengming Lin
    Qiang Wu
    Ju Liu
    Dawei Wang
    Xiangmao Kong
    Multimedia Tools and Applications, 2021, 80 : 22951 - 22964
  • [25] BRAIN TUMOR SEGMENTATION AND CLASSIFICATION USING OPTIMIZED U-NET
    Shiny, K. V.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [26] Brain Tumor Segmentation with Attention-based U-Net
    Li, Tuofu
    Liu, Javin Jia
    Tai, Yintao
    Tian, Yuxuan
    SECOND IYSF ACADEMIC SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING, 2021, 12079
  • [27] Brain tumor segmentation and classification using optimized U-Net
    Shiny, K., V
    IMAGING SCIENCE JOURNAL, 2024, 72 (02): : 204 - 219
  • [28] TwoPath U-Net for Automatic Brain Tumor Segmentation from Multimodal MRI Data
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 300 - 309
  • [29] Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture
    Arora, Anuja
    Jayal, Ambikesh
    Gupta, Mayank
    Mittal, Prakhar
    Satapathy, Suresh Chandra
    COMPUTERS, 2021, 10 (11)
  • [30] AResU-Net: Attention Residual U-Net for Brain Tumor Segmentation
    Zhang, Jianxin
    Lv, Xiaogang
    Zhang, Hengbo
    Liu, Bin
    SYMMETRY-BASEL, 2020, 12 (05):