An Interface Reconstruction Method Based on the Physics-Informed Neural Network: Application to Ultrasonic Array Imaging

被引:0
|
作者
Gao, Xiang [1 ]
Zhang, Yuncheng [2 ]
Xiang, Yanxun [2 ]
Li, Peng [1 ]
Liu, Xiucheng [1 ]
机构
[1] Beijing Univ Sci & Technol, Sch Informat Engn, Beijing 100021, Peoples R China
[2] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Acoustics; Neural networks; Surface reconstruction; Image reconstruction; Arrays; Testing; Focusing; Feature extraction; Accuracy; Training; Complex curved-surface components; physics-informed neural network (PINN); total focusing imaging; ultrasonic nondestructive testing (NDT);
D O I
10.1109/TIM.2024.3522626
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The accurately and rapidly delineating surface contours is crucial for ultrasonic immersion nondestructive testing (NDT) of complex curved-surface components. However, directly employing ultrasonic signals for interface reconstruction in dual-layer media remains a challenge. In this article, a physics-informed neural network (PINN) is developed for the reconstruction of the interface between water and unknown surface components. By incorporating the nonlinear equations of Fermat's principle as additional constraints in the loss function, a neural network is constructed that is dual driven by both data and physical information. The simulation and experimental results show that the maximum error (ME) of the interface reconstruction by this method is below 0.5 mm, the average relative error (ARE) is less than 1.0%, and the computation time is less than 1 s. The imaging results of V-shaped crack defects using different interface reconstruction methods are further compared, verifying the significant advantages of PINN in ultrasonic array inspection of complex curved components.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] FDM-PINN: Physics-informed neural network based on fictitious domain method
    Yang, Qihong
    Yang, Yu
    Cui, Tao
    He, Qiaolin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (03) : 511 - 524
  • [22] Physics-informed generative neural network: an application to troposphere temperature prediction
    Chen, Zhihao
    Gao, Jie
    Wang, Weikai
    Yan, Zheng
    ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (06)
  • [23] A physics-informed neural network-based aerodynamic parameter identification method for aircraft
    Lin, Jie
    Chen, Shu-sheng
    Yang, Hua
    Jiang, Quan-feng
    Liu, Jie
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [24] Dynamic state estimation method of heating network based on physics-informed neural networks
    Zhang J.
    Guo Q.
    Wang Z.
    Sun Y.
    Li B.
    Yin G.
    Sun H.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2023, 43 (10): : 69 - 78
  • [25] Research on underwater acoustic field prediction method based on physics-informed neural network
    Du, Libin
    Wang, Zhengkai
    Lv, Zhichao
    Wang, Lei
    Han, Dongyue
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [26] A parameter estimation method for chromatographic separation process based on physics-informed neural network
    Zou, Tao
    Yajima, Tomoyuki
    Kawajiri, Yoshiaki
    JOURNAL OF CHROMATOGRAPHY A, 2024, 1730
  • [27] Physics-informed neural network for volumetric sound field reconstruction of speech signals
    Olivieri, Marco
    Karakonstantis, Xenofon
    Pezzoli, Mirco
    Antonacci, Fabio
    Sarti, Augusto
    Fernandez-Grande, Efren
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2024, 2024 (01):
  • [28] A More General Electromagnetic Inverse Scattering Method Based on Physics-Informed Neural Network
    Hu, Yi-Di
    Wang, Xiao-Hua
    Zhou, Hui
    Wang, Lei
    Wang, Bing-Zhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Research on Modeling Method of Autonomous Underwater Vehicle Based on a Physics-Informed Neural Network
    Zhao, Yifeng
    Hu, Zhiqiang
    Du, Weifeng
    Geng, Lingbo
    Yang, Yi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (05)
  • [30] Reconstruction of nearshore wave fields based on physics-informed neural networks
    Wang, Nan
    Chen, Qin
    Chen, Zhao
    COASTAL ENGINEERING, 2022, 176