FusionNet for Interactive Image Segmentation

被引:0
|
作者
Wu, Enyi [1 ]
Shi, Qingxuan [1 ,2 ]
Wang, Kanglin [1 ]
机构
[1] Hebei Univ, Sch Cyber Secur & Comp, Baoding 071002, Peoples R China
[2] Hebei Univ, Hebei Machine Vis Engn Res Ctr, Baoding 071002, Peoples R China
关键词
Interactive image segmentation; Feature fusion; Attention mechanism;
D O I
10.1007/978-981-97-8490-5_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the advancements in neural network technologies driving interactive image segmentation forward, challenges persist, especially concerning segmentation ambiguities caused by overlapping or visually similar objects against complex backgrounds, as well as intricate object boundaries. Addressing these challenges, we introduce FusionNet, focusing on effective feature fusion. Firstly, the Hierarchical Context Fusion Module aids in grasping holistic structures and multi-scale contextual information of target objects. Secondly, the Attention Feature Fusion Module captures more representative feature expressions. This design empowers FusionNet to capture details and contextual relationships better, thereby enhancing segmentation accuracy. For fine-grained boundary details, we propose the Local Correction Module, refining local mask details meticulously. This module initially focuses on information around newly clicked areas, employing discriminative correction feedback for enhanced detail processing accuracy. Rigorous experimentations on datasets like SBD, DAVIS, GrabCut, and Berkeley validate our model's effectiveness, with segmentation results strongly supporting the superiority of our approach.
引用
收藏
页码:332 / 346
页数:15
相关论文
共 50 条
  • [41] Interactive segmentation of image volumes with Live Surface
    Armstrong, Christopher J.
    Price, Brian L.
    Barrett, William A.
    COMPUTERS & GRAPHICS-UK, 2007, 31 (02): : 212 - 229
  • [42] Interactive image segmentation using probabilistic hypergraphs
    Ding, Lei
    Yilmaz, Alper
    PATTERN RECOGNITION, 2010, 43 (05) : 1863 - 1873
  • [43] GridIIS: Grid Based Interactive Image Segmentation
    Zhu, Pengqi
    Wang, Da-Han
    Zhu, Shunzhi
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XI, 2024, 14435 : 351 - 363
  • [44] Superpixels Based Interactive Image Segmentation Algorithm
    Long Jian-wu
    Shen Xuan-jing
    Zang Hui
    Chen Hai-peng
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON INFORMATION, BUSINESS AND EDUCATION TECHNOLOGY (ICIBET 2013), 2013, 26 : 77 - 80
  • [45] Interactive image segmentation based on graph cut
    Zhan, Yong-Song
    Lei, De-Bin
    Pan, Chun-Hong
    Shi, Min-Yong
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2008, 20 (03): : 799 - 802
  • [46] Interactive image segmentation via kernel propagation
    Jung, Cheolkon
    Jian, Meng
    Liu, Juan
    Jiao, Licheng
    Shen, Yanbo
    PATTERN RECOGNITION, 2014, 47 (08) : 2745 - 2755
  • [47] Discriminative gaussian mixtures for interactive image segmentation
    Wang, Jue
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 601 - 604
  • [48] Diffusion map based interactive image segmentation
    Xun Wang
    Jianqiu Jin
    Bailin Yang
    Multimedia Tools and Applications, 2017, 76 : 17497 - 17509
  • [49] Differential Dynamic Trees for Interactive Image Segmentation
    Silva, Ilan F.
    Sousa, Azael M.
    Falcao, Alexandre X.
    Bragantini, Jordao
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4328 - 4334
  • [50] A survey of recent interactive image segmentation methods
    Hiba Ramadan
    Chaymae Lachqar
    Hamid Tairi
    Computational Visual Media, 2020, 6 : 355 - 384