FusionNet for Interactive Image Segmentation

被引:0
|
作者
Wu, Enyi [1 ]
Shi, Qingxuan [1 ,2 ]
Wang, Kanglin [1 ]
机构
[1] Hebei Univ, Sch Cyber Secur & Comp, Baoding 071002, Peoples R China
[2] Hebei Univ, Hebei Machine Vis Engn Res Ctr, Baoding 071002, Peoples R China
关键词
Interactive image segmentation; Feature fusion; Attention mechanism;
D O I
10.1007/978-981-97-8490-5_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the advancements in neural network technologies driving interactive image segmentation forward, challenges persist, especially concerning segmentation ambiguities caused by overlapping or visually similar objects against complex backgrounds, as well as intricate object boundaries. Addressing these challenges, we introduce FusionNet, focusing on effective feature fusion. Firstly, the Hierarchical Context Fusion Module aids in grasping holistic structures and multi-scale contextual information of target objects. Secondly, the Attention Feature Fusion Module captures more representative feature expressions. This design empowers FusionNet to capture details and contextual relationships better, thereby enhancing segmentation accuracy. For fine-grained boundary details, we propose the Local Correction Module, refining local mask details meticulously. This module initially focuses on information around newly clicked areas, employing discriminative correction feedback for enhanced detail processing accuracy. Rigorous experimentations on datasets like SBD, DAVIS, GrabCut, and Berkeley validate our model's effectiveness, with segmentation results strongly supporting the superiority of our approach.
引用
收藏
页码:332 / 346
页数:15
相关论文
共 50 条
  • [1] INTERACTIVE IMAGE SEGMENTATION
    DENISOV, DA
    KHARUK, VI
    TSIBULSKII, GM
    CHERNYAVSKII, AV
    SOVIET JOURNAL OF REMOTE SENSING, 1991, 8 (04): : 710 - 721
  • [2] FusionNet: A Deep Fully Residual Convolutional Neural Network for Image Segmentation in Connectomics
    Quan, Tran Minh
    Hildebrand, David Grant Colburn
    Jeong, Won-Ki
    FRONTIERS IN COMPUTER SCIENCE, 2021, 3
  • [3] INTERACTIVE IMAGE SEGMENTATION WITH TRANSFORMERS
    Faizov, Boris
    Shakhuro, Vlad
    Konushin, Anton
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1171 - 1175
  • [4] Sequential interactive image segmentation
    Zheng Lin
    Zhao Zhang
    Zi-Yue Zhu
    Deng-Ping Fan
    Xia-Lei Liu
    Computational Visual Media, 2023, 9 : 753 - 765
  • [5] Interactive tools for image segmentation
    Jackowski, M
    Goshtasby, A
    Satter, M
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 1063 - 1074
  • [6] Sequential interactive image segmentation
    Lin, Zheng
    Zhang, Zhao
    Zhu, Zi-Yue
    Fan, Deng-Ping
    Liu, Xia-Lei
    COMPUTATIONAL VISUAL MEDIA, 2023, 9 (04) : 753 - 765
  • [7] Regional Interactive Image Segmentation Networks
    Liew, Jun Hao
    Wei, Yunchao
    Xiong, Wei
    Ong, Sim-Heng
    Feng, Jiashi
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2746 - 2754
  • [8] Interactive Image Segmentation on Multiscale Appearances
    He, Kun
    Wang, Dan
    Tong, Miao
    Zhang, Xu
    IEEE ACCESS, 2018, 6 : 67732 - 67741
  • [9] An Interactive Segmentation of Medical Image Series
    Wu Bingrong
    Xie Mei
    FBIE: 2008 INTERNATIONAL SEMINAR ON FUTURE BIOMEDICAL INFORMATION ENGINEERING, PROCEEDINGS, 2008, : 7 - 10
  • [10] Probabilistic Diffusion for Interactive Image Segmentation
    Wang, Tao
    Yang, Jian
    Ji, Zexuan
    Sun, Quansen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 330 - 342