Are more data always better? - Machine learning forecasting of algae based on long-term observations

被引:0
|
作者
Beckmann, D. Atton [1 ]
Werther, M. [2 ]
Mackay, E. B. [3 ]
Spyrakos, E. [1 ]
Hunter, P. [1 ,4 ]
Jones, I. D. [1 ]
机构
[1] Univ Stirling, Sch Nat Sci, Biol & Environm Sci, Stirling, Scotland
[2] Swiss Fed Inst Aquat Sci & Technol, Dept Surface Waters Res & Management, Dubendorf, Switzerland
[3] UK Ctr Ecol & Hydrol, Lancaster Environm Ctr, Lancaster LA1 4AP, England
[4] Univ Stirling, Sch Nat Sci, Scotlands Int Environm Ctr, Stirling, Scotland
基金
英国自然环境研究理事会;
关键词
Algal blooms; Cyanobacteria; Forecasting; Freshwater; Early warning; Machine learning; ARTIFICIAL NEURAL-NETWORK; CLIMATE-CHANGE; CYANOBACTERIAL BLOOMS; WATER-QUALITY; FRESH-WATER; ENVIRONMENTAL-FACTORS; GLOBAL EXPANSION; CHLOROPHYLL-A; LAKE; PREDICTION;
D O I
10.1016/j.jenvman.2024.123478
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bloom-forming algae present a unique challenge to water managers as they can significantly impair provision of important ecosystem services and cause health risks to humans and animals. Consequently, effective short-term algae forecasts are important as they provide early warnings and enable implementation of mitigation strategies. In this context, machine learning (ML) emerges as a promising forecasting tool. However, the performance of ML models is heavily dependent on the availability of appropriate training data. Consequently, it is essential to determine the volume of data necessary to develop reliable ML forecasts. Understanding this will guide future monitoring strategies, optimize resource allocation, and set realistic expectations for management outcomes. In this study, we used 30 years of fortnightly measurements of 13 different parameters from a lake in the English Lake District (UK) to examine the impact of training data duration on the performance of ML models for forecasting chlorophyll-a two weeks in advance. Once training data availability exceeded four years, a Random Forest model was found to consistently outperform naive benchmarks (mean absolute percentage error 16.4 % lower than the best-performing benchmark). With more than 5 years of training data, model performance generally continued to improve, but with diminishing returns. Furthermore, it was found that equivalent and, in some cases, better performance could be achieved by only using a subset of the most important input features. Additionally, it was found that reducing the sampling frequency had negative impacts on performance, both due to the reduced number of training observations available, and increased forecast horizon. Our findings demonstrate that for lakes ecologically similar to the study site, a consistent and regular sampling programme focused on monitoring a limited number of key parameters can provide sufficient observations for generating short-term algae forecasts after approximately five years of data collection. Importantly, this result provides justification for the initiation of new monitoring programmes for sites where algal blooms are a concern, and suggests that there are likely many pre-existing monitoring datasets which would be suitable for training algae forecast models.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Machine learning in long-term mortality forecasting
    Qiao, Yang
    Wang, Chou-Wen
    Zhu, Wenjun
    GENEVA PAPERS ON RISK AND INSURANCE-ISSUES AND PRACTICE, 2024, 49 (02): : 340 - 362
  • [2] Medium- and Long-Term Precipitation Forecasting Method Based on Data Augmentation and Machine Learning Algorithms
    Tang, Tiantian
    Jiao, Donglai
    Chen, Tao
    Gui, Guan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 1000 - 1011
  • [3] Machine Learning based Electric Load Forecasting for Short and Long-term Period
    Vantuch, Tomas
    Gonzalez Vidal, Aurora
    Ramallo-Gonzalez, Alfonso P.
    Skarmeta, Antonio F.
    Misak, Stanislav
    2018 IEEE 4TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2018, : 511 - 516
  • [4] Effect of Data Characteristics Inconsistency on Medium and Long-Term Runoff Forecasting by Machine Learning
    Ai, Ping
    Xiong, Chuansheng
    Li, Ke
    Song, Yanhong
    Gong, Shicheng
    Yue, Zhaoxin
    IEEE ACCESS, 2023, 11 : 11601 - 11612
  • [5] An Investigation into the Efficacy of Machine Learning Models for Long-term Forecasting
    Issi, Fatih
    12TH INTERNATIONAL CONFERENCE ON SMART GRID, ICSMARTGRID 2024, 2024, : 487 - 492
  • [6] Comparison of the long-term forecasting method of RSSI by machine learning
    Nagao, Tatsuya
    Hayashi, Takahiro
    Amano, Yoshiaki
    IEICE COMMUNICATIONS EXPRESS, 2020, 9 (11): : 553 - 558
  • [7] Machine Learning of Forecasting Long-Term Economic Crisis in Indonesia
    Sa'adah, Siti
    Liong, The Houw
    Adiwijaya
    2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2013, : 261 - 266
  • [8] Machine Learning-Based Two-Stage Data Selection Scheme for Long-Term Influenza Forecasting
    Moon, Jaeuk
    Jung, Seungwon
    Park, Sungwoo
    Hwang, Eenjun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03): : 2945 - 2959
  • [9] Long-Term Energy Forecasting System Based on LSTM and Deep Extreme Machine Learning
    Nakkach, Cherifa
    Zrelli, Amira
    Ezzedine, Tahar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (01): : 545 - 560
  • [10] Toward more data publication of long-term ecological observations
    Shin, Nagai
    Shibata, Hideaki
    Osawa, Takeshi
    Yamakita, Takehisa
    Nakamura, Masahiro
    Kenta, Tanaka
    ECOLOGICAL RESEARCH, 2020, 35 (05) : 700 - 707