Fire behaviour of axially loaded high-strength concrete-filled circular high-strength steel tubular columns

被引:2
|
作者
Du, Tao [1 ]
Liu, Faqi [2 ,3 ]
Yang, Hua [2 ,3 ]
Peng, Kang [1 ]
机构
[1] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Key Lab Struct Dynam Behav & Control, Minist Educ, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Key Lab Smart Prevent Mitigat Civil Engn Disasters, Minist Ind & Informat Technol, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
Fire resistance; High-strength concrete filled high-strength; steel tube; Experiments; FEA; Calculation method; MECHANICAL-PROPERTIES; STRUCTURAL-STEEL; TUBE COLUMNS; RESISTANCE; DESIGN; SQUARE;
D O I
10.1016/j.engstruct.2025.119781
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
High-strength concrete-filled high-strength steel tubular (high-strength CFST for short) columns, characterized by the high-strength materials, exhibit fire performance distinct from that of normal-strength concrete-filled steel tubular (normal-strength CFST for short) columns due to the more critical material degradation at high temperatures. However, existing fire research and evaluation methods primarily focus on the normal-strength CFST columns, leaving a gap in understanding the fire behaviour of high-strength CFST columns. To address the deficiency of this area, a series of ISO 834 standard fire tests were conducted on four slender high-strength CFST columns and one slender normal-strength CFST column under axial load. During the experiments, the temperatures and deformations of the specimens were meticulously recorded. The results reveal a significant influence of load ratio on the fire resistance of high-strength CFST columns and the fact that the high-strength CFST column exhibits a shorter fire resistance compared to the normal-strength CFST column under the same load ratio. A finite element (FE) model integrating temperature field and mechanical analysis with the sequentially coupled approach was developed using ABAQUS and validated against the experimental data. Subsequently, the parametric investigation was performed to explore a wider range of high-strength CFST column parameters. A simplified method was proposed to estimate the load capacities of high-strength CFST columns subjected to fire.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Experimental and numerical behavior of eccentrically loaded square concrete-filled steel tubular long columns made of high-strength steel and concrete
    Li, Guo-Chang
    Chen, Bo-Wen
    Yang, Zhi-Jian
    Liu, Yao-Peng
    Feng, Yi-He
    THIN-WALLED STRUCTURES, 2021, 159
  • [32] Experimental Behavior and Design of High-Strength Circular Concrete-Filled Steel Tube Short Columns
    Wei, Jiangang
    Luo, Xia
    Lai, Zhichao
    Varma, Amit H.
    JOURNAL OF STRUCTURAL ENGINEERING, 2020, 146 (01)
  • [33] Axial compressive behavior of high-strength spiral-confined high-strength concrete-filled high-strength square steel-tube columns
    Yang, Zhijian
    Sun, Lisuo
    Liu, Mo
    Pan, Jianbang
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2025, 226
  • [34] Axially compressive behaviors of high-strength concrete-filled SHC steel tubes
    Zhang, SM
    Guo, LH
    Wang, YY
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING FOR YOUNG EXPERTS, VOLS 1 AND 2, 2002, : 915 - 919
  • [35] Experimental behaviour of high-strength concrete columns in fire
    Benmarce, A
    Guenfoud, M
    MAGAZINE OF CONCRETE RESEARCH, 2005, 57 (05) : 283 - 287
  • [36] Axial compressive performance of high-strength spiral-confined high-strength concrete-filled high-strength square-steel-tube long columns
    Yang, Zhijian
    Sun, Lisuo
    Liu, Mo
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2025, 229
  • [37] Compressive strength of axially loaded circular hollow centrifugal concrete-filled steel tubular short columns
    Zhao, Yan-Gang
    Yan, Xi-Feng
    Lin, Siqi
    ENGINEERING STRUCTURES, 2019, 201
  • [38] Ultimate flexural strength of rectangular concrete-filled steel tubular beam-columns using high-strength materials
    Fujinaga, Takashi
    JAPAN ARCHITECTURAL REVIEW, 2023, 6 (01)
  • [39] Experimental Investigation of Concrete-Filled High-Strength Steel Tubular X Joints
    Li, Hai-Ting
    Young, Ben
    JOURNAL OF STRUCTURAL ENGINEERING, 2018, 144 (10)
  • [40] Rectangular concrete-filled steel tubular beam-columns using high-strength steel: Experiments and design
    Du, Yansheng
    Chen, Zhihua
    Liew, J. Y. Richard
    Xiong, Ming-Xiang
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2017, 131 : 1 - 18