Pneumonia Detection from Chest X-Ray Images Using Deep Learning and Transfer Learning for Imbalanced Datasets

被引:0
|
作者
Alshanketi, Faisal [1 ]
Alharbi, Abdulrahman [1 ,2 ]
Kuruvilla, Mathew [2 ]
Mahzoon, Vahid [2 ]
Siddiqui, Shams Tabrez [1 ]
Rana, Nadim [1 ]
Tahir, Ali [1 ]
机构
[1] Jazan Univ, Coll Engn & Comp Sci, Dept Comp Sci, Jazan 45142, Saudi Arabia
[2] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA USA
关键词
X-ray images; Visual geometry group (VGG); Residual networks (ResNet); Vision Transformers (ViT); ImageNet; Deep learning;
D O I
10.1007/s10278-024-01334-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Pneumonia remains a significant global health challenge, necessitating timely and accurate diagnosis for effective treatment. In recent years, deep learning techniques have emerged as powerful tools for automating pneumonia detection from chest X-ray images. This paper provides a comprehensive investigation into the application of deep learning for pneumonia detection, with an emphasis on overcoming the challenges posed by imbalanced datasets. The study evaluates the performance of various deep learning architectures, including visual geometry group (VGG), residual networks (ResNet), and Vision Transformers (ViT) along with strategies to mitigate the impact of imbalanced dataset, on publicly available datasets such as the Chest X-Ray Images (Pneumonia) dataset, BRAX dataset, and CheXpert dataset. Additionally, transfer learning from pre-trained models, such as ImageNet, is investigated to leverage prior knowledge for improved performance on pneumonia detection tasks. Our investigation extends to zero-shot and few-shot learning experiments on different geographical regions. The study also explores semi-supervised learning methods, including the Mean Teacher algorithm, to utilize unlabeled data effectively. Experimental results demonstrate the efficacy of transfer learning, data augmentation, and balanced weight in addressing imbalanced datasets, leading to improved accuracy and performance in pneumonia detection. Our findings emphasize the importance of selecting appropriate strategies based on dataset characteristics, with semi-supervised learning showing particular promise in leveraging unlabeled data. The findings highlight the potential of deep learning techniques in revolutionizing pneumonia diagnosis and treatment, paving the way for more efficient and accurate clinical workflows in the future.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images
    Chouhan, Vikash
    Singh, Sanjay Kumar
    Khamparia, Aditya
    Gupta, Deepak
    Tiwari, Prayag
    Moreira, Catarina
    Damasevicius, Robertas
    de Albuquerque, Victor Hugo C.
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [22] A systematic literature review on deep learning approaches for pneumonia detection using chest X-ray images
    Sharma, Shagun
    Guleria, Kalpna
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 24101 - 24151
  • [23] A systematic literature review on deep learning approaches for pneumonia detection using chest X-ray images
    Shagun Sharma
    Kalpna Guleria
    Multimedia Tools and Applications, 2024, 83 : 24101 - 24151
  • [24] Deep Learning Models to Predict Fatal Pneumonia Using Chest X-Ray Images
    Anai, Satoshi
    Hisasue, Junko
    Takaki, Yoichi
    Hara, Naohiko
    CANADIAN RESPIRATORY JOURNAL, 2022, 2022
  • [25] COVID Pneumonia Prediction Based on Chest X-Ray Images Using Deep Learning
    Khare, Akshat
    Patel, Pranjal
    Sankaranarayanan, Suresh
    Lorenz, Pascal
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2580 - 2585
  • [26] Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection Using Chest X-ray
    Rahman, Tawsifur
    Chowdhury, Muhammad E. H.
    Khandakar, Amith
    Islam, Khandaker R.
    Islam, Khandaker F.
    Mahbub, Zaid B.
    Kadir, Muhammad A.
    Kashem, Saad
    APPLIED SCIENCES-BASEL, 2020, 10 (09):
  • [27] Deep Learning Models for Tuberculosis Detection from Chest X-ray Images
    Nguyen, Quang H.
    Nguyen, Binh P.
    Dao, Son D.
    Unnikrishnan, Balagopal
    Dhingra, Rajan
    Ravichandran, Savitha Rani
    Satpathy, Sravani
    Raja, Palaparthi Nirmal
    Chua, Matthew C. H.
    2019 26TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), 2019, : 381 - 385
  • [28] Attention-Based Transfer Learning for Efficient Pneumonia Detection in Chest X-ray Images
    Cha, So-Mi
    Lee, Seung-Seok
    Ko, Bonggyun
    APPLIED SCIENCES-BASEL, 2021, 11 (03): : 1 - 15
  • [29] Detection of coronavirus disease from X-ray images using deep learning and transfer learning algorithms
    Albahli, Saleh
    Albattah, Waleed
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (05) : 841 - 850
  • [30] COVID-19 detection from chest X-ray images using transfer learning
    El Houby, Enas M. F.
    SCIENTIFIC REPORTS, 2024, 14 (01):