DFCDR: Domain-Aware Feature Decoupling and Fusion for Cross-Domain Recommendation

被引:0
|
作者
Wei, Jinyue [1 ]
Kou, Yue [1 ]
Shen, Derong [1 ]
Nie, Tiezheng [1 ]
Li, Dong [2 ]
机构
[1] Northeastern Univ, Shenyang 110004, Peoples R China
[2] Liaoning Univ, Shenyang 110036, Peoples R China
来源
WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024 | 2024年 / 14883卷
基金
中国国家自然科学基金;
关键词
Cross-domain recommendation; contrastive learning; feature decoupling; adaptive feature fusion;
D O I
10.1007/978-981-97-7707-5_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-Domain Recommendation (CDR) has indisputably proven its efficacy in alleviating the challenge of data sparsity in Recommender Systems. However, introducing domain-specific preferences from the source domain can introduce irrelevant information to the target domain. Furthermore, directly combining domain-general and domain-specific information may hinder the performance of the target domain. In this paper, we propose a domain-aware feature decoupling and fusion framework for CDR (DFCDR), which enables CDR more trustworthy and accurate. Specifically, we first design a user-level differential privacy method to protect users' privacy within each domain. Then we propose a contrastive learning-based feature decoupling method that achieves two pivotal goals: disentangling users' domain-specific preferences from their domain-general preferences, as well as differentiating between the popular and non-popular features of items. Finally, we present an adaptive feature fusion strategy that leverages a gating network to effectively fuse users' domain-general and domain-specific features in the target domain. We conduct extensive experiments on two real-world datasets. The results demonstrate the effectiveness of our proposed method.
引用
收藏
页码:138 / 149
页数:12
相关论文
共 50 条
  • [21] A Dynamic Cross-Domain Recommendation Model with Target-Aware Complementary Preference Transfer and Information Fusion
    Duan, Lele
    Zhu, Ling
    Ren, Peng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [22] Multi-graph Convolutional Feature Transfer for Cross-domain Recommendation
    Zhang, Yanling
    Liu, Zhen
    Ma, Ying
    Gao, Yibo
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [23] Cross-Domain Recommendation Based on Sentiment Analysis and Latent Feature Mapping
    Wang, Yongpeng
    Yu, Hong
    Wang, Guoyin
    Xie, Yongfang
    ENTROPY, 2020, 22 (04)
  • [24] Contrastive Cross-Domain Sequential Recommendation
    Cao, Jiangxia
    Cong, Xin
    Sheng, Jiawei
    Liu, Tingwen
    Wang, Bin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 138 - 147
  • [25] Cross-Domain Recommendation with Multiple Sources
    Zhang, Qian
    Lu, Jie
    Zhang, Guangquan
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [26] Attentive-Feature Transfer based on Mapping for Cross-domain Recommendation
    Liu, Zhen
    Tian, Jingyu
    Zhao, Lingxi
    Zhang, Yanling
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 151 - 158
  • [27] Unsupervised Domain Adaptation for Neural Machine Translation with Domain-Aware Feature Embeddings
    Dou, Zi-Yi
    Hu, Junjie
    Anastasopoulos, Antonios
    Neubig, Graham
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 1417 - 1422
  • [28] Cross-Domain Recommendation Method in Tourism
    QingQi
    JianCao
    Tan, Yudong
    Xiao, Quanwu
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 106 - 112
  • [29] Contrastive Cross-domain Recommendation in Matching
    Xie, Ruobing
    Liu, Qi
    Wang, Liangdong
    Liu, Shukai
    Zhang, Bo
    Lin, Leyu
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4226 - 4236
  • [30] Cross-Domain Recommendation with Adversarial Examples
    Yan, Haoran
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Wang, Deqing
    Liu, Yanchi
    Sheng, Victor S.
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT III, 2020, 12114 : 573 - 589