Asynchronous Distributed-Memory Parallel Algorithms for Influence Maximization

被引:0
|
作者
Singhal, Shubhendra Pal [1 ]
Hati, Souvadra [1 ]
Young, Jeffrey [1 ]
Sarkar, Vivek [1 ]
Hayashi, Akihiro [1 ]
Vuduc, Richard [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
Influence maximization; FA-BSP; PGAS; IMM; NETWORKS;
D O I
10.1109/SC41406.2024.00108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Influence maximization (IM) is the problem of finding the k most influential nodes in a graph. We propose distributed-memory parallel algorithms for the two main kernels of a state-of-the-art implementation of one IM algorithm, influence maximization via martingales (IMM). The baseline relies on a bulk-synchronous parallel approach and uses replication to reduce communication and achieve approximate load balance, at the cost of synchronization and high memory requirements. By contrast, our method fully distributes the data, thereby improving memory scalability, and uses fine-grained asynchronous parallelism to improve network utilization and the cost of doing more communication. We show our design and implementation can achieve up to 29.6x speedup over the MPI-based state-of-the-art on synthetic and real-world network graphs. Moreover, ours is the first implementation that can run IMM to find influencers in the 'twitter' graph (41M nodes and 1.4B edges) in 200 seconds using 8K CPU cores of NERSC Perlmutter supercomputer.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Parallel implementation of wavelet transforms on distributed-memory multicomputers
    González, P
    Cabaleiro, JC
    Pena, TF
    INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, PROCEEDINGS, 2001, : 45 - 50
  • [32] Parallel sparse orthogonal factorization on distributed-memory multiprocessors
    Sun, CG
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (03): : 666 - 685
  • [33] Distributed-Memory Parallel Algorithms for Sparse Times Tall-Skinny-Dense Matrix Multiplication
    Selvitopi, Oguz
    Brock, Benjamin
    Nisa, Israt
    Tripathy, Alok
    Yelick, Katherine
    Buluc, Aydin
    PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, ICS 2021, 2021, : 431 - 442
  • [34] A Parallel, Distributed-Memory Framework for Comparative Motif Discovery
    De Witte, Dieter
    Van Bel, Michiel
    Audenaert, Pieter
    Demeester, Piet
    Dhoedt, Bart
    Vandepoele, Klaas
    Fostier, Jan
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2013), PT II, 2014, 8385 : 268 - 277
  • [35] PARALLEL COMPUTATION OF GROBNER BASES ON DISTRIBUTED-MEMORY MACHINES
    SAWADA, H
    TERASAKI, S
    AIBA, A
    JOURNAL OF SYMBOLIC COMPUTATION, 1994, 18 (03) : 207 - 222
  • [36] Bidiagonalization and R-Bidiagonalization: Parallel Tiled Algorithms, Critical Paths and Distributed-Memory Implementation
    Faverge, Mathieu
    Langou, Julien
    Robert, Yves
    Dongarra, Jack
    2017 31ST IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2017, : 668 - 677
  • [37] A PARALLEL VECTOR EQUATION SOLVER FOR DISTRIBUTED-MEMORY COMPUTERS
    QIN, JN
    NGUYEN, DT
    COMPUTING SYSTEMS IN ENGINEERING, 1994, 5 (01): : 19 - 25
  • [38] Parallel volume rendering on distributed-memory multiprocessor system
    Chen, WP
    Deng, JH
    Tang, ZS
    SECOND INTERNATION CONFERENCE ON IMAGE AND GRAPHICS, PTS 1 AND 2, 2002, 4875 : 969 - 974
  • [39] Parallel FP-LAPW for distributed-memory machines
    Dohmen, R
    Pichlmeier, J
    Petersen, M
    Wagner, F
    Scheffler, M
    COMPUTING IN SCIENCE & ENGINEERING, 2001, 3 (04) : 18 - 29
  • [40] PSEUDOSPECTRAL CORRELATION METHODS ON DISTRIBUTED-MEMORY PARALLEL ARCHITECTURES
    MARTINEZ, TJ
    CARTER, EA
    CHEMICAL PHYSICS LETTERS, 1995, 241 (5-6) : 490 - 496