Polyploid genome assembly of Cardamine chenopodiifolia

被引:0
|
作者
Emonet, Aurelia [1 ]
Awad, Mohamed [1 ]
Tikhomirov, Nikita [1 ]
Vasilarou, Maria [1 ]
Perez-Anton, Miguel [1 ]
Gan, Xiangchao [1 ,2 ]
Novikova, Polina Yu. [1 ]
Hay, Angela [1 ]
机构
[1] Max Planck Inst Plant Breeding Res, Carl Von Linne Weg 10, D-50829 Cologne, Germany
[2] Nanjing Agr Univ, Acad Adv Interdisciplinary Studies, Bioinformat Ctr, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Peoples R China
来源
GIGABYTE | 2024年 / 2024卷
基金
瑞士国家科学基金会;
关键词
ARABIDOPSIS-THALIANA; GENETIC-BASIS; EVOLUTIONARY; PROVIDES; BRASSICACEAE; SEQUENCE; SYSTEM;
D O I
10.46471/gigabyte.145
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cardamine chenopodiifolia is an amphicarpic plant in the Brassicaceae family. Plants develop two fruit types, one above and another below ground. This rare trait is associated with octoploidy in C. chenopodiifolia. The absence of genomic data for C. chenopodiifolia currently limits our understanding of the development and evolution of amphicarpy. Here, we produced a chromosome-scale assembly of the C. chenopodiifolia genome using high-fidelity long read sequencing with the Pacific Biosciences platform. We assembled 32 chromosomes and two organelle genomes with a total length of 597.2 Mb and an N50 of 18.8 Mb. Genome completeness was estimated at 99.8%. We observed structural variation among homeologous chromosomes, suggesting that C. chenopodiifolia originated via allopolyploidy, and phased the octoploid genome into four sub-genomes using orthogroup trees. This fully phased, chromosome-level genome assembly is an important resource to help investigate amphicarpy in C. chenopodiifolia and the origin of trait novelties by allopolyploidy.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Genotyping of SNPs in a polyploid genome by pyrosequencing™
    Rickert, AM
    Premstaller, A
    Gebhardt, C
    Oefner, PJ
    BIOTECHNIQUES, 2002, 32 (03) : 592 - +
  • [22] The complex polyploid genome architecture of sugarcane
    Healey, A. L.
    Garsmeur, O.
    Lovell, J. T.
    Shengquiang, S.
    Sreedasyam, A.
    Jenkins, J.
    Plott, C. B.
    Piperidis, N.
    Pompidor, N.
    Llaca, V.
    Metcalfe, C. J.
    Dolezel, J.
    Capal, P.
    Carlson, J. W.
    Hoarau, J. Y.
    Hervouet, C.
    Zini, C.
    Dievart, A.
    Lipzen, A.
    Williams, M.
    Boston, L. B.
    Webber, J.
    Keymanesh, K.
    Tejomurthula, S.
    Rajasekar, S.
    Suchecki, R.
    Furtado, A.
    May, G.
    Parakkal, P.
    Simmons, B. A.
    Barry, K.
    Henry, R. J.
    Grimwood, J.
    Aitken, K. S.
    Schmutz, J.
    D'Hont, A.
    NATURE, 2024, 628 (8008) : 804 - 808
  • [23] Genome editing technology in polyploid crops
    Li, Chao
    Shu, Yu
    Hu, Qiong
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [24] The application of genome 'painting' in polyploid Rubus
    Lim, KY
    Hadonou, AM
    Knight, VH
    Bennett, MD
    Leitch, IJ
    EUCARPIA SYMPOSIUM ON FRUIT BREEDING AND GENETICS, 1998, (484): : 367 - 371
  • [25] The complex polyploid genome architecture of sugarcane
    Healey, A. L.
    Garsmeur, O.
    Lovell, J. T.
    Shengquiang, S.
    Sreedasyam, A.
    Jenkins, J.
    Plott, C. B.
    Piperidis, N.
    Pompidor, N.
    Llaca, V.
    Metcalfe, C. J.
    Dolezel, J.
    Capal, P.
    Carlson, J. W.
    Hoarau, J. Y.
    Hervouet, C.
    Zini, C.
    Dievart, A.
    Lipzen, A.
    Williams, M.
    Boston, L. B.
    Webber, J.
    Keymanesh, K.
    Tejomurthula, S.
    Rajasekar, S.
    Suchecki, R.
    Furtado, A.
    May, G.
    Parakkal, P.
    Simmons, B. A.
    Barry, K.
    Henry, R. J.
    Grimwood, J.
    Aitken, K. S.
    Schmutz, J.
    D'Hont, A.
    NATURE, 2024, 628 (8009) : 804 - +
  • [26] The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance
    Huang, Chuying
    Ying, Hongqin
    Yang, Xibiao
    Gao, Yuan
    Li, Tuo
    Wu, Bo
    Ren, Meng
    Zhang, Zixiong
    Ding, Jun
    Gao, Jianhua
    Wen, Dan
    Ye, Xingzhi
    Liu, Ling
    Wang, Huan
    Sun, Guogen
    Zou, Yi
    Chen, Nansheng
    Wang, Li
    CELL DISCOVERY, 2021, 7 (01)
  • [27] Comparative ITS and AFLP analysis of diploid Cardamine (Brassicaceae) taxa from closely related polyploid complexes
    Marhold, K
    Lihová, J
    Perny, M
    Bleeker, W
    ANNALS OF BOTANY, 2004, 93 (05) : 507 - 520
  • [28] Among-Population Variation in Tolerance to Larval Herbivory by Anthocharis cardamines in the Polyploid Herb Cardamine pratensis
    Konig, Malin A. E.
    Lehtila, Kari
    Wiklund, Christer
    Ehrlen, Johan
    PLOS ONE, 2014, 9 (06):
  • [29] The Cardamine hirsuta genome offers insight into the evolution of morphological diversity
    Gan X.
    Hay A.
    Kwantes M.
    Haberer G.
    Hallab A.
    Ioio R.D.
    Hofhuis H.
    Pieper B.
    Cartolano M.
    Neumann U.
    Nikolov L.A.
    Song B.
    Hajheidari M.
    Briskine R.
    Kougioumoutzi E.
    Vlad D.
    Broholm S.
    Hein J.
    Meksem K.
    Lightfoot D.
    Shimizu K.K.
    Shimizu-Inatsugi R.
    Imprialou M.
    Kudrna D.
    Wing R.
    Sato S.
    Huijser P.
    Filatov D.
    Mayer K.F.X.
    Mott R.
    Tsiantis M.
    Nature Plants, 2 (11)
  • [30] Characterization of the complete chloroplast genome sequence of Cardamine macrophylla (Brassicaceae)
    Ting Ren
    Yanci Yang
    Jiao Wang
    Ruiting Zhang
    Zhan-Lin Liu
    Conservation Genetics Resources, 2018, 10 : 627 - 630