Demi-shuffle duals of Magnus polynomials in a free associative algebra

被引:0
|
作者
Nakamura, Hiroaki [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
来源
ALGEBRAIC COMBINATORICS | 2023年 / 6卷 / 04期
关键词
shuffle product; non-commutative polynomial; group-like series; ZINBIEL ALGEBRAS;
D O I
10.5802/alco.287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two linear bases of the free associative algebra 96(X, Y ): one is formed by the Magnus polynomials of type (adk1X Y ) <middle dot> <middle dot> <middle dot> (adkdX Y ) X k and the other is its dual basis (formed by what we call the "demi-shuffle" polynomials) with respect to the standard pairing on the monomials of 96(X, Y ). As an application, we derive a formula of Le-Murakami, Furusho type that expresses arbitrary coefficients of a group-like series J is an element of C (( X, Y )) in terms of the "regular" coefficients of J .
引用
收藏
页码:929 / 939
页数:12
相关论文
共 50 条