Biased Self-supervised learning for ASR

被引:0
|
作者
Kreyssig, Florian L. [1 ]
Shi, Yangyang [2 ]
Guo, Jinxi [2 ]
Sari, Leda [2 ]
Mohamed, Abdelrahman [2 ]
Woodland, Philip C. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge, England
[2] Meta AI, New York, NY USA
来源
关键词
speech recognition; self-supervised learning; semi-supervised; unsupervised;
D O I
10.21437/Interspeech.2023-2499
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Self-supervised learning via masked prediction pre-training (MPPT) has shown impressive performance on a range of speech-processing tasks. This paper proposes a method to bias self-supervised learning towards a specific task. The core idea is to slightly finetune the model that is used to obtain the target sequence. This leads to better performance and a substantial increase in training speed. Furthermore, this paper proposes a variant of MPPT that allows low-footprint streaming models to be trained effectively by computing the MPPT loss on masked and unmasked frames. These approaches are evaluated for automatic speech recognition on the Librispeech corpus, where 100 hours of data served as the labelled data and 860 hours as the unlabelled data. The biased training outperforms the unbiased training by 15.5% after 250k updates and 23.8% after 100k updates on test-other. For the streaming models, the pre-training approach yields a reduction in word error rate of 44.1%.
引用
收藏
页码:4948 / 4952
页数:5
相关论文
共 50 条
  • [21] Self-supervised Learning: A Succinct Review
    Rani, Veenu
    Nabi, Syed Tufael
    Kumar, Munish
    Mittal, Ajay
    Kumar, Krishan
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (04) : 2761 - 2775
  • [22] Audio self-supervised learning: A survey
    Liu, Shuo
    Mallol-Ragolta, Adria
    Parada-Cabaleiro, Emilia
    Qian, Kun
    Jing, Xin
    Kathan, Alexander
    Hu, Bin
    Schuller, Bjorn W.
    PATTERNS, 2022, 3 (12):
  • [23] MarioNette: Self-Supervised Sprite Learning
    Smirnov, Dmitriy
    Gharbi, Michael
    Fisher, Matthew
    Guizilini, Vitor
    Efros, Alexei A.
    Solomon, Justin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [24] Self-supervised learning for outlier detection
    Diers, Jan
    Pigorsch, Christian
    STAT, 2021, 10 (01):
  • [25] Self-supervised Learning: A Succinct Review
    Veenu Rani
    Syed Tufael Nabi
    Munish Kumar
    Ajay Mittal
    Krishan Kumar
    Archives of Computational Methods in Engineering, 2023, 30 : 2761 - 2775
  • [26] Self-Supervised Learning for Recommender System
    Huang, Chao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 3440 - 3443
  • [27] Self-Supervised Learning for Multimedia Recommendation
    Tao, Zhulin
    Liu, Xiaohao
    Xia, Yewei
    Wang, Xiang
    Yang, Lifang
    Huang, Xianglin
    Chua, Tat-Seng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5107 - 5116
  • [28] Whitening for Self-Supervised Representation Learning
    Ermolov, Aleksandr
    Siarohin, Aliaksandr
    Sangineto, Enver
    Sebe, Nicu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [29] Self-Supervised Learning in Remote Sensing
    Wang, Yi
    Albrecht, Conrad M.
    Ait Ali Braham, Nassim
    Mou, Lichao
    Zhu, Xiao Xiang
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (04) : 213 - 247
  • [30] Relational Self-Supervised Learning on Graphs
    Lee, Namkyeong
    Hyun, Dongmin
    Lee, Junseok
    Park, Chanyoung
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1054 - 1063