Image Super-Resolution via Deep Feature Recalibration Network

被引:1
|
作者
Xin, Jingwei [1 ]
Jiang, Xinrui [2 ]
Wang, Nannan [2 ]
Li, Jie [1 ]
Gao, Xinbo [1 ,3 ]
机构
[1] Xidian Univ, Sch Elect Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Single image super resolution; Information integration; Feature recalibration; Computational complexity; Time-saving;
D O I
10.1007/978-3-030-60633-6_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent years have witnessed remarkable progress in convolutional neural network (CNN) based image super-solution (SR) methods. Existing methods tend to deepen the network by means of residual skip connections to achieve better performance. However, these methods are still hard to be applied in real-world applications due to the requirement of its heavy computation. In this paper, we propose a Deep Feature Recalibration Network (DFRN), which strives for efficiency yet effective networks. We divide the process of network nonlinear mapping into two steps: information integration and feature enhancement, and proposed two types of block models: Multi-Scale Information Integration Block (MSIIB) and Feature Recalibration Block (FRB). MSIIB integrates the representation of the input data in the network with different size of receptive fields. FRB enhances the information via obtaining the attention along two different dimensions (channel and plane space of feature maps) respectively. By combining MSIIB and FRB, we provide a more efficient and time-saving method for SISR. Experiments show that the proposed DFRN method outperforms state-of-the-art methods in terms of both objective evaluation metrics (PSNR, SSIM, and running speed) and subjective perception on the generated images.
引用
收藏
页码:256 / 267
页数:12
相关论文
共 50 条
  • [21] POLARIMETRIC SAR IMAGE SUPER-RESOLUTION VIA DEEP CONVOLUTIONAL NEURAL NETWORK
    Lin, Liupeng
    Li, Jie
    Yuan, Qiangqiang
    Shen, Huanfeng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3205 - 3208
  • [22] Infrared image super-resolution via discriminative dictionary and deep residual network
    Yao, Tingting
    Luo, Yu
    Hu, Jincheng
    Xie, Haibo
    Hu, Qing
    INFRARED PHYSICS & TECHNOLOGY, 2020, 107 (107)
  • [23] A deep recursive multi-scale feature fusion network for image super-resolution?
    Liu, Feiqiang
    Yang, Xiaomin
    De Baets, Bernard
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 90
  • [24] Adaptive feature denoising based deep convolutional network for single image super-resolution
    Cheng, Rui
    Wu, Yuzhe
    Wang, Jia
    Ma, Mingming
    Niu, Yi
    Shi, Guangming
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 223
  • [25] Self-feature Learning: An Efficient Deep Lightweight Network for Image Super-resolution
    Xiao, Jun
    Ye, Qian
    Zhao, Rui
    Lam, Kin-Man
    Wan, Kao
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4408 - 4416
  • [26] Deep Feature Translation Network Guided by Combined Loss for Single Image Super-Resolution
    Guan, Mingyang
    Song, Dandan
    Tao, Linmi
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 664 - 677
  • [27] Image Super-Resolution With Deep Convolutional Neural Network
    Ji, Xiancai
    Lu, Yao
    Guo, Li
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 626 - 630
  • [28] A DEEP CONVOLUTIONAL NETWORK FOR MEDICAL IMAGE SUPER-RESOLUTION
    Gao, Yunxing
    Li, Hengjian
    Dong, Jiwen
    Feng, Guang
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5310 - 5315
  • [29] Deep Unfolding Network for Spatiospectral Image Super-Resolution
    Ma, Qing
    Jiang, Junjun
    Liu, Xianming
    Ma, Jiayi
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 28 - 40
  • [30] Deep Recursive Network for Hyperspectral Image Super-Resolution
    Wei, Wei
    Nie, Jiangtao
    Li, Yong
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 1233 - 1244