Solidification and tribological behavior of CoCrFeMnNi high entropy alloy fabricated by laser powder bed melting

被引:0
|
作者
Liu, Shaopeng [1 ,2 ]
Li, Hongbo [2 ]
Sun, Ke [2 ]
Zhang, Han [3 ]
Shen, Mingxue [1 ,2 ]
机构
[1] East China Jiaotong Univ, State Key Lab Performance Monitoring & Protecting, Nanchang 330013, Peoples R China
[2] East China Jiaotong Univ, Sch Mat Sci & Engn, Nanchang 330013, Peoples R China
[3] East China Jiaotong Univ, Fundamental Expt & Engn Practice Ctr, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
L-PBF; CoCrFeMnNi alloy; Cellular structure; Mechanical property; Tribological behavior; GROWTH; MICROSTRUCTURE; STRENGTH; 316L;
D O I
10.1016/j.jallcom.2025.179137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High entropy alloys are suitable for manufacturing large-sized or intricately shaped components used in harsh environments, but their processing is hindered by high melting point, high viscosity, and poor melt flowability. Laser powder bed melting (L-PBF) is an effective method for manufacturing the above-mentioned components, but the unique layer-by-layer deposition and rapid solidification will create high anisotropy and fine substructures, yet their impact on wear resistance and friction layer formation is limited. This study primarily investigated the influence of various laser powers (120 W, 140 W, 160 W, 180 W) on the solidification microstructure, mechanical properties, and wear resistance of CoCrFeMnNi alloy. The results showed that as the laser power increased from 120 W to 180 W, the cell diameter expanded from 0.368 mu m to 0.612 mu m, and the crystallographic texture transitioned from < 111 > to < 100 > and < 110 > orientations. This transition leads to a steady decrease in yielding strength until it achieves the optimal mechanical properties at 140 W. Tribological tests against Si3N4 balls demonstrated a typical inverse correlation between wear rate and hardness. Analysis of the worn surface's morphology and chemical composition of the worn surface showed that increasing the cell diameter will not alter the primary wear mechanism, but does lead to increased oxidative and adhesive wear.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Characterization of residual stress in laser melting deposited CoCrFeMnNi high entropy alloy by neutron diffraction
    Li, H. G.
    Lee, T. L.
    Zheng, W.
    Lu, Y. Z.
    Yin, H. B. C.
    Yang, J. X.
    Huang, Y. J.
    Sun, J. F.
    MATERIALS LETTERS, 2020, 263
  • [32] High-entropy alloy CoCrFeMnNi produced by powder metallurgy
    Eissmann, Nadine
    Kloeden, Burghardt
    Weissgaerber, Thomas
    Kieback, Bernd
    POWDER METALLURGY, 2017, 60 (03) : 184 - 197
  • [33] Mechanical properties of CoCrFeMnNi high entropy alloy lattice structures formed by selective laser melting
    Du, Yangwei
    He, Ketai
    Guo, Rong
    Zhou, Zhipeng
    Ming, Guoxuan
    Liu, Qi
    Dong, Hao
    MATERIALS & DESIGN, 2025, 252
  • [34] Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying
    Peng Chen
    Sheng Li
    Yinghao Zhou
    Ming Yan
    Moataz M.Attallah
    JournalofMaterialsScience&Technology, 2020, 43 (08) : 40 - 43
  • [35] Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying
    Chen, Peng
    Li, Sheng
    Zhou, Yinghao
    Yan, Ming
    Attallah, Moataz M.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 43 : 40 - 43
  • [36] Effect of NiCoFeAlTi high entropy intermetallic reinforcement particle size on the microstructure and mechanical properties of CoCrFeMnNi high-entropy alloy composites fabricated by selective laser melting
    Zhang, Zhiyu
    Ma, Pan
    Fang, Yacheng
    Yang, Zhilu
    Zhang, Nan
    Prashanth, Konda Gokuldoss
    Jia, Yandong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947
  • [37] Cyclic plasticity and fatigue damage of CrMnFeCoNi high entropy alloy fabricated by laser powder-bed fusion
    Jin, Minsoo
    Piglione, Alessandro
    Dovgyy, Bogdan
    Hosseini, Ehsan
    Hooper, Paul A.
    Holdsworth, Stuart R.
    Pham, Minh-Son
    ADDITIVE MANUFACTURING, 2020, 36 (36)
  • [38] Nanomechanical Behavior of CoCrFeMnNi High-Entropy Alloy
    Mridha, Sanghita
    Das, Santanu
    Aouadi, Samir
    Mukherjee, Sundeep
    Mishra, Rajiv S.
    JOM, 2015, 67 (10) : 2296 - 2302
  • [39] Nanomechanical Behavior of CoCrFeMnNi High-Entropy Alloy
    Sanghita Mridha
    Santanu Das
    Samir Aouadi
    Sundeep Mukherjee
    Rajiv S. Mishra
    JOM, 2015, 67 : 2296 - 2302
  • [40] Microstructure, mechanical and tribological properties of oxide dispersion strengthened CoCrFeMnNi high-entropy alloys fabricated by powder metallurgy
    Nagarjuna, Cheenepalli
    Sharma, Ashutosh
    Lee, Kwan
    Hong, Soon-Jik
    Ahn, Byungmin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 22 : 1708 - 1722