Thermal performance in latent heat thermal energy storage with annular heat source using different shape fins

被引:0
|
作者
Kong, Xiangqiang [1 ]
Hou, Wanke [1 ]
Miao, Xichun [1 ]
Zhang, Yijian [1 ]
Li, Ying [1 ]
Li, Jianbo [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Energy Storage Technol, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Latent heat thermal storage; Annular heat source; Heat transfer; Shape of fins; Structural parameters; PHASE-CHANGE MATERIAL; SOLIDIFICATION; ENHANCEMENT; EXCHANGER; PCM;
D O I
10.1016/j.solener.2025.113397
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For a latent heat thermal energy storage (LHTES) unit, its heat transfer performance can be significantly enhanced by increasing the fin surface. The LHTES unit with an annular heat source (AHS) is proposed for different shape fins and structural parameters. A corresponding numerical simulation has been conducted. The results show that pipe diameter ratio gamma has the greatest influence on the heat transfer power Phi, followed by the outer and inner fin type in the charging and discharging processes. The increase of gamma from 0.55 to 0.7 leads to tc decreasing by 62.65%, the charging power Phi c increasing by 153.68%, and the wall-average Nusselt number Nuc in the charging process increasing by 45.47%. Furthermore, an optimal gamma of 0.625 is identified for the discharging process, resulting in -29.61%, 38.27%, and 20.2% changes in td, the discharging power Phi d, and the wall-average Nusselt number Nud in the discharging process compared to gamma of 0.55. Bifurcation angle theta significantly influences tc and td. The optimal theta for the charging process is 60 degrees, reducing tc by 40.7% compared to that of 180 degrees. For the discharging process, the optimal theta is 90 degrees, reducing td by 8.81%. The number of branches n significantly impacts heat transfer by influencing heat conduction. For the charging process, increasing n from 4 to 14 results in -45.39%, 81.78%, and -39.67% changes in tc, Phi c, and Nuc, respectively, while during the discharging process, it leads to changes of -31.91%, 45.48%, and -25.91% in td, Phi d, and Nud, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Numerical evaluation of the latent heat thermal energy storage performance enhancement by installing longitudinal fins
    Kirincic, Mateo
    Trp, Anica
    Lenic, Kristian
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [22] Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms
    Soltani, Hossein
    Soltani, M.
    Karimi, H.
    Nathwani, Jatin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 179
  • [23] Enhancing the Performance of Latent Heat Thermal Energy Storage using Different Configurations and Designs of Heat Transfer Pipes
    Ali, Abdullah Masoud
    Bagdanavicius, Audrius
    ADVANCES IN COMPUTATIONAL HEAT AND MASS TRANSFER, ICCHMT 2023, VOL 1, 2024, : 457 - 467
  • [24] Thermal performance of sensible and latent heat thermal energy storage systems
    Suresh, Charmala
    Saini, Rajeshwer Prasad
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (06) : 4743 - 4758
  • [25] Effect of orientation on thermal performance of a latent heat storage system equipped with annular fins - An experimental and numerical investigation
    Kalapala, Lokesh
    Devanuri, Jaya Krishna
    APPLIED THERMAL ENGINEERING, 2021, 183
  • [26] Numerical simulation of thermal performance and thermal stress of latent heat storage system with various fins
    Xue, Xue
    Zhang, Ao
    Wu, Yajie
    Li, Huaan
    Wu, Fengyongkang
    Lv, Laiquan
    Zhou, Hao
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [27] Bionic topology optimization of fins for rapid latent heat thermal energy storage
    Tian, Yang
    Liu, Xianglei
    Xu, Qiao
    Luo, Qingyang
    Zheng, Hangbin
    Song, Chao
    Zhu, Zhonghui
    Gao, Ke
    Dang, Chunzhuo
    Wang, Haolei
    Xuan, Yimin
    APPLIED THERMAL ENGINEERING, 2021, 194
  • [28] Review of PCM charging in latent heat thermal energy storage systems with fins
    Al-Salami, Hayder A.
    Dhaidan, Nabeel S.
    Abbas, Hawraa H.
    Al-Mousawi, Fadhel N.
    Homod, Raad Z.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 51
  • [29] Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays
    Diao, Y. H.
    Liang, L.
    Zhao, Y. H.
    Wang, Z. Y.
    Bai, F. W.
    APPLIED ENERGY, 2019, 233 : 894 - 905
  • [30] Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins
    Rathod, Manish K.
    Banerjee, Jyotirmay
    APPLIED THERMAL ENGINEERING, 2015, 75 : 1084 - 1092