Normalized solutions of linearly coupled Choquard system with potentials

被引:0
|
作者
Li, Meng [1 ]
He, Jinchun [2 ]
Xu, Haoyuan [2 ]
Yang, Meihua [2 ]
机构
[1] Informat Engn Univ, Basic Dept, Zhengzhou, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan, Peoples R China
关键词
ground state solutions; linearly coupled Choquard system; normalized solutions; NONLINEAR SCHRODINGER SYSTEMS; ORBITAL STABILITY; GROUND-STATES; EXISTENCE; EQUATIONS; COMPACTNESS; BEHAVIOR;
D O I
10.1002/mma.10556
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of solutions for the linearly coupled Choquard system with potentials {-Delta u+lambda(1)u+V-1(x)u=mu(1)(I-alpha star|u|(p))|u|(p-2)u+beta(x)v, x is an element of R-N, -Delta v+lambda(2)v+V-2(x)v=mu(2)(I alpha star|v|q)|v|q-2v+beta(x)u, under the constraint integral(N)(R)u(2)dx=xi(2),integral(N)(R)v(2)dx=eta(2), where N >= 3,I-alpha=1/|x|(N-alpha),alpha is an element of (0,N),1+alpha/N<p,q<N+alpha/N-2,mu(1)>0,mu(2)>0 and beta(x) is a fixed function.
引用
收藏
页码:4439 / 4459
页数:21
相关论文
共 50 条
  • [41] Normalized solutions for a critical fractional Choquard equation with a nonlocal perturbation
    Lan, Jiali
    He, Xiaoming
    Meng, Yuxi
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [42] Normalized Ground States for a Fractional Choquard System in R
    Chen, Wenjing
    Wang, Zexi
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (07)
  • [43] Soliton solutions and Backlund transformation for the normalized linearly coupled nonlinear wave equations with symbolic computation
    Qu, Qi-Xing
    Tian, Bo
    Liu, Wen-Jun
    Wang, Pan
    Jiang, Yan
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (21) : 10386 - 10392
  • [44] Symmetric positive solutions to nonlinear Choquard equations with potentials
    Liliane Maia
    Benedetta Pellacci
    Delia Schiera
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [45] NORMALIZED SOLUTIONS FOR LOWER CRITICAL CHOQUARD EQUATIONS WITH CRITICAL SOBOLEV PERTURBATION
    Yao, Shuai
    Chen, Haibo
    Radulescu, Vicentiu D.
    Sun, Juntao
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3696 - 3723
  • [46] Multiple solutions to a linearly coupled elliptic system with critical exponents
    Wu, Huiling
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (01)
  • [47] Normalized solutions for a Choquard equation with exponential growth in R2
    Deng, Shengbing
    Yu, Junwei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (03):
  • [48] Normalized solutions to Choquard equation including the critical exponents and a logarithmic perturbation ☆
    Deng, Yinbin
    Shi, Yulin
    Yang, Xiaolong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 429 : 204 - 246
  • [49] Multiplicity of Normalized Solutions to a Class of Non-autonomous Choquard Equations
    Meng, Yuxi
    Wang, Bo
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (01)
  • [50] Symmetric positive solutions to nonlinear Choquard equations with potentials
    Maia, Liliane
    Pellacci, Benedetta
    Schiera, Delia
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (02)