Unravelling patterns of food tolerance to pesticide residues via non-negative matrix factorization

被引:0
|
作者
Mei, Suyu [1 ]
机构
[1] Shenyang Normal Univ, Software Coll, Shenyang 110034, Peoples R China
关键词
food safety; maximum residue limits; non-negative matrix factorization; pesticide management; Tanimoto similarity;
D O I
10.1111/1750-3841.70029
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Gaining knowledge about the maximum residue limits (MALs) of pesticides on fresh or processed foods is critical to the process of pre-harvest cultivation, post-harvest processing and storage, and the downstream safety surveillance of food commodities. In this study, we explore the available MALs of 643 pesticides on 128 foods via non-negative matrix factorization (NMF) and hierarchical clustering to gain insights into the patterns of how similar pesticides exhibit similar MALs profiles on foods. Meanwhile, NMF predicts the MALs for untested foods via the implicitly-learnt patterns without conducting in vivo testing that potentially violates ethic regulations. Clustering results show that foods with closer NMF weights commonly exhibit closer residue tolerance profiles, and pesticides with closer MALs profiles exhibit higher structural similarities. These patterns help food experts to assess the MALs of pesticides concerned on untested foods, and the determination of MRLs on foods has its mechanistic basis. Using the reverse process of NMF decomposition, we provide the predicted MALs for 24.31% pesticide-food pairs, and NMF achieves 0.9 R2 on more than 75.78% foods in terms of recreating the experimental MALs values. Only 8.6% foods achieve less than 0.7 R2. These predicted MALs are supposed to provide practical or theoretical reference to benefit the surveillance of pesticide applications and food safety control.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Modeling Traffic Motion Patterns via Non-negative Matrix Factorization
    Ahmadi, Parvin
    Kaviani, Razie
    Gholampour, Iman
    Tabandeh, Mahmoud
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2015, : 214 - 219
  • [2] STRUCTURED NON-NEGATIVE MATRIX FACTORIZATION WITH SPARSITY PATTERNS
    Laurberg, Hans
    Schmidt, Mikkel N.
    Christensen, Mads Graesboll
    Jensen, Soren Holdt
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 1693 - +
  • [3] Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization
    Sotiras, Aristeidis
    Resnick, Susan M.
    Davatzikos, Christos
    NEUROIMAGE, 2015, 108 : 1 - 16
  • [4] Mining Frequent Patterns using Non-negative Matrix Factorization
    Batcha, Nowshath K.
    Jabbar, Bazila Banu Abdul
    PROCEEDINGS OF THE 2017 IEEE SECOND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES (ICECCT), 2017,
  • [5] Incremental subspace learning via non-negative matrix factorization
    Bucak, Serhat S.
    Gunsel, Bilge
    PATTERN RECOGNITION, 2009, 42 (05) : 788 - 797
  • [6] A Hierarchical Network Simplification Via Non-Negative Matrix Factorization
    Dias, Markus Diego
    Mansour, Moussa R.
    Dias, Fabio
    Petronetto, Fabiano
    Silva, Claudio T.
    Nonato, L. Gustavo
    2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2017, : 119 - 126
  • [7] On Audio Enhancement via Online Non-Negative Matrix Factorization
    Sack, Andrew
    Jiang, Wenzhao
    Perlmutter, Michael
    Salanevich, Palina
    Needell, Deanna
    2022 56TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2022, : 287 - 291
  • [8] Dropout non-negative matrix factorization
    Zhicheng He
    Jie Liu
    Caihua Liu
    Yuan Wang
    Airu Yin
    Yalou Huang
    Knowledge and Information Systems, 2019, 60 : 781 - 806
  • [9] Non-negative matrix factorization on kernels
    Zhang, Daoqiang
    Zhou, Zhi-Hua
    Chen, Songcan
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 404 - 412
  • [10] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    COMPUTER JOURNAL, 2021, 64 (07): : 1080 - 1092