Improved Antibacterial Properties of Additively Manufactured Ti-6Al-4V Surface Machined by Wire Electro-Discharge Machining

被引:0
|
作者
Omarov, Salikh [1 ]
Nauryz, Nurlan [1 ]
Ali, Shahid [1 ]
Kenessova, Ainur [2 ]
Pham, Tri [2 ]
Talamona, Didier [1 ]
Perveen, Asma [1 ]
机构
[1] Nazarvayev Univ, Dept Mech & Aerosp Engn, Astana 010000, Kazakhstan
[2] Nazarbayev Univ, Dept Biol, Astana 010000, Kazakhstan
关键词
additive manufacturings; bacteria adhesions; biofilm formations; electro-discharge machinings; selective laser meltings; titanium alloys; BIOFILM FORMATION; IMPLANTS; TI; BIOCOMPATIBILITY; ROUGHNESS; ALLOY;
D O I
10.1002/adem.202402147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Titanium alloys are the most demanded material type in implant applications. However, developing bacteria-resistant implant characteristics is still in the progress of the research field. In this study, the performance of micro-wire electro-discharge machining (mu-WEDM) surface modification technique on Ti-6Al-4V alloy is investigated. The performance parameters such as material removal rate, kerf width, surface roughness, and crater size are evaluated in terms of capacitance and gap-voltage input parameters. In addition, the adhesion of bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis on treated surfaces is tested. Results show that the difference in discharge energy affects surface biofilm prevention performance. According to that, Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis attach more on surfaces with 0.727 mu m roughness which are machined with 10 nF and 100 V. Staphylococcus aureus attaches more on surfaces with 0.211 mu m roughness machined with 1 nF and 90 V. Meanwhile, surface with 1.531 mu m roughness, machined with 100 nF and 110 V, provides the least number of bacteria attached to the surface for all strains except Bacillus subtilis. In conclusion, this study found that mu-WEDM surface treatment techniques can increase biofilm prevention properties of implant surfaces for different bacteria strains, within a certain range of discharge energy.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Representing crack growth in additively manufactured Ti-6Al-4V
    Jones, R.
    Michopoulos, J. G.
    Iliopoulos, A. P.
    Raman, R. K. Singh
    Phan, N.
    Nguyen, T.
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 116 : 610 - 622
  • [32] Electrochemical Polishing of Additively Manufactured Ti-6Al-4V Alloy
    Zhang, Yifei
    Li, Jianzhong
    Che, Shuanghang
    Tian, Yanwen
    METALS AND MATERIALS INTERNATIONAL, 2020, 26 (06) : 783 - 792
  • [33] Kinetics and crystallography of globularization in the additively manufactured Ti-6Al-4V
    Jin, Yu
    Zhang, Yanqin
    Zhao, Guowei
    Li, Wei
    RESULTS IN ENGINEERING, 2023, 18
  • [34] Role of porosity in machinability of additively manufactured Ti-6Al-4V
    Ahmad, Sajjad
    Mujumdar, Soham
    Varghese, Vinay
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2022, 76 : 397 - 406
  • [35] Superabrasive Grinding Characteristics of Additively Manufactured Ti-6Al-4V
    Rakesh Kandulna
    Anirban Naskar
    S. Paul
    Transactions of the Indian National Academy of Engineering, 2022, 7 (1) : 197 - 205
  • [36] Examination of the twinning activity in additively manufactured Ti-6Al-4V
    Zhong, H. Z.
    Zhang, X. Y.
    Wang, S. X.
    Gu, J. F.
    MATERIALS & DESIGN, 2018, 144 : 14 - 24
  • [37] On the damping and fatigue characterization of additively manufactured Ti-6Al-4V
    Wilson, Peyton J.
    Azizian-Farsani, Elaheh
    Paul, Mikyle
    Khonsari, Michael M.
    Shao, Shuai
    Shamsaei, Nima
    ADDITIVE MANUFACTURING LETTERS, 2024, 11
  • [38] CHARACTERIZATION OF WIRE-ARC ADDITIVELY MANUFACTURED (WAAM) OF TITANIUM ALLOY (TI-6AL-4V) FOR NANOMECHANICAL PROPERTIES
    Hossain, Shahjahan
    Pliego, Ashley
    Lee, Jinsun
    Taheri, Hossein
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 2B, 2021,
  • [39] Additively manufactured Ti-6Al-4V microstructure tailoring for improved fatigue life performance
    Beal, Roger
    Salehi, Seyyed-Danial
    Kingstedt, Owen T.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (07) : 2599 - 2615
  • [40] The effect of loading direction on strain localisation in wire arc additively manufactured Ti-6Al-4V
    Lunt, David
    Ho, Alistair
    Davis, Alec
    Harte, Allan
    Martina, Filomeno
    da Fonseca, Joao Quinta
    Prangnell, Philip
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 788