Improved Antibacterial Properties of Additively Manufactured Ti-6Al-4V Surface Machined by Wire Electro-Discharge Machining

被引:0
|
作者
Omarov, Salikh [1 ]
Nauryz, Nurlan [1 ]
Ali, Shahid [1 ]
Kenessova, Ainur [2 ]
Pham, Tri [2 ]
Talamona, Didier [1 ]
Perveen, Asma [1 ]
机构
[1] Nazarvayev Univ, Dept Mech & Aerosp Engn, Astana 010000, Kazakhstan
[2] Nazarbayev Univ, Dept Biol, Astana 010000, Kazakhstan
关键词
additive manufacturings; bacteria adhesions; biofilm formations; electro-discharge machinings; selective laser meltings; titanium alloys; BIOFILM FORMATION; IMPLANTS; TI; BIOCOMPATIBILITY; ROUGHNESS; ALLOY;
D O I
10.1002/adem.202402147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Titanium alloys are the most demanded material type in implant applications. However, developing bacteria-resistant implant characteristics is still in the progress of the research field. In this study, the performance of micro-wire electro-discharge machining (mu-WEDM) surface modification technique on Ti-6Al-4V alloy is investigated. The performance parameters such as material removal rate, kerf width, surface roughness, and crater size are evaluated in terms of capacitance and gap-voltage input parameters. In addition, the adhesion of bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis on treated surfaces is tested. Results show that the difference in discharge energy affects surface biofilm prevention performance. According to that, Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis attach more on surfaces with 0.727 mu m roughness which are machined with 10 nF and 100 V. Staphylococcus aureus attaches more on surfaces with 0.211 mu m roughness machined with 1 nF and 90 V. Meanwhile, surface with 1.531 mu m roughness, machined with 100 nF and 110 V, provides the least number of bacteria attached to the surface for all strains except Bacillus subtilis. In conclusion, this study found that mu-WEDM surface treatment techniques can increase biofilm prevention properties of implant surfaces for different bacteria strains, within a certain range of discharge energy.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Experimental investigation of surface integrity after wire electro-discharge machining of Ti-6Al-4V
    Ghodsiyeh, Danial
    Akbarzadeh, Saleh
    Izman, Sudin
    Moradi, Mona
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2019, 44 (09):
  • [2] Machining of microholes in Ti-6Al-4V by hybrid electro-discharge machining process
    Naveen Anthuvan Rex
    Krishnaraj Vijayan
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [3] Machining of microholes in Ti-6Al-4V by hybrid electro-discharge machining process
    Rex, Naveen Anthuvan
    Vijayan, Krishnaraj
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (04)
  • [4] Preliminary Study on Machining of Additively Manufactured Ti-6Al-4V
    Jay K. Raval
    Aamer A. Kazi
    Xiangyu Guo
    Ryan Zvanut
    Chabum Lee
    Bruce L. Tai
    JOM, 2022, 74 : 1120 - 1125
  • [5] Machining of GTAW additively manufactured Ti-6Al-4V structures
    Hoye, N.
    Cuiuri, D.
    Rashid, R. A. Rahman
    Palanisamy, S.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 99 (1-4): : 313 - 326
  • [6] Machining of gtaw additively manufactured Ti-6Al-4V structures
    Palanisamy, S. (spalanisamy@swin.edu.au), 1600, Springer London (99): : 1 - 4
  • [7] Preliminary Study on Machining of Additively Manufactured Ti-6Al-4V
    Raval, Jay K.
    Kazi, Aamer A.
    Guo, Xiangyu
    Zvanut, Ryan
    Lee, Chabum
    Tai, Bruce L.
    JOM, 2022, 74 (03) : 1120 - 1125
  • [8] Machining of GTAW additively manufactured Ti-6Al-4V structures
    N. Hoye
    D. Cuiuri
    R. A. Rahman Rashid
    S. Palanisamy
    The International Journal of Advanced Manufacturing Technology, 2018, 99 : 313 - 326
  • [9] Effect of Mixed Powder Ultrasonic Vibration on Surface Structure and Mechanical Properties of Ti-6Al-4V in Electro-Discharge Machining
    Zhang Yunpeng
    Sun Guangbiao
    Zhang Anzhou
    RARE METAL MATERIALS AND ENGINEERING, 2014, 43 (01) : 189 - 193
  • [10] Experimental investigation of surface integrity after wire electro-discharge machining of Ti–6Al–4V
    Danial Ghodsiyeh
    Saleh Akbarzadeh
    Sudin Izman
    Mona Moradi
    Sādhanā, 2019, 44