gptools: Scalable Gaussian Process Inference with Stan

被引:0
|
作者
Hoffmann, Till [1 ]
Onnela, Jukka-Pekka [1 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, 677 Huntington Ave, Boston, MA 02115 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2025年 / 112卷 / 02期
关键词
Gaussian process; Fourier transform; sparse approximation; Stan; !text type='Python']Python[!/text; R; MODELS;
D O I
10.18637/jss.v112.i02
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Gaussian processes (GPs) are sophisticated distributions to model functional data. Whilst theoretically appealing, they are computationally cumbersome except for small datasets. We implement two methods for scaling GP inference in Stan: First, a general sparse approximation using a directed acyclic dependency graph; second, a fast, exact method for regularly spaced data modeled by GPs with stationary kernels using the fast Fourier transform. Based on benchmark experiments, we offer guidance for practitioners to decide between different methods and parameterizations. We consider two real-world examples to illustrate the package. The implementation follows Stan's design and exposes performant inference through a familiar interface. Full posterior inference for ten thousand data points is feasible on a laptop in less than 20 seconds. Details on how to get started using the popular interfaces cmdstanpy for Python and cmdstanr for R are provided.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [11] SCALABLE GAUSSIAN PROCESS FOR EXTREME CLASSIFICATION
    Dhaka, Akash Kumar
    Andersen, Michael Riis
    Moreno, Pablo Garcia
    Vehtari, Aki
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [12] Scalable Gaussian Process Regression Networks
    Li, Shibo
    Xing, Wei
    Kirby, Robert M.
    Zhe, Shandian
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2456 - 2462
  • [13] A Scalable Hierarchical Gaussian Process Classifier
    Thi Nhat Anh Nguyen
    Bouzerdoum, Abdesselam
    Phung, Son Lam
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (11) : 3042 - 3057
  • [14] TOWARDS SCALABLE GAUSSIAN PROCESS MODELING
    Pandita, Piyush
    Kristensen, Jesper
    Wang, Liping
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 2B, 2020,
  • [15] Automatic Variational Inference in Stan
    Kucukelbir, Alp
    Ranganath, Rajesh
    Gelman, Andrew
    Blei, David M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [16] Sequential Inference for Deep Gaussian Process
    Wang, Yali
    Brubaker, Marcus
    Chaib-draa, Brahim
    Urtasun, Raquel
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 694 - 703
  • [17] Scalable inference for space-time Gaussian Cox processes
    Shirota, Shinichiro
    Banerjee, Sudipto
    JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (03) : 269 - 287
  • [18] Scalable Exact Inference in Multi-Output Gaussian Processes
    Bruinsma, Wessel P.
    Perim, Eric
    Tebbutt, Will
    Hosking, J. Scott
    Solin, Arno
    Turner, Richard E.
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [19] Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes
    Samo, Yves-Laurent Kom
    Roberts, Stephen
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2227 - 2236
  • [20] Scalable Exact Inference in Multi-Output Gaussian Processes
    Bruinsma, Wessel P.
    Perim, Eric
    Tebbutt, Will
    Hosking, J. Scott
    Solin, Arno
    Turner, Richard E.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119