Primitive decompositions of idempotents of the group algebras of dihedral groups and generalized quaternion groups
被引:0
|
作者:
Dai, Lilan
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
Dai, Lilan
[1
]
Li, Yunnan
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
Li, Yunnan
[1
]
机构:
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
idempotent;
primitive decomposition;
group algebra;
UNIT GROUP;
FINITE;
D O I:
10.3934/math.20241365
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we introduce a method for computing the primitive decomposition of idempotents in any semisimple finite group algebra, utilizing its matrix representations and Wedderburn decomposition. Particularly, we use this method to calculate the examples of the dihedral group algebras C[D2n] and generalized quaternion group algebras C[Q4m]. Inspired by the orthogonality relations of the character tables of these two families of groups, we obtain two sets of trigonometric identities. Furthermore, a group algebra isomorphism between C[D8] and C[Q8] is described, under which the two complete sets of primitive orthogonal idempotents of these group algebras correspond bijectively.