Integrated physiological, transcriptomic and metabolomic analyses reveal potential mechanisms of potato tuber dormancy release

被引:0
|
作者
Liu, Hao [1 ,2 ]
Wang, Hongyang [3 ]
Feng, Youhong [1 ]
Yang, Yan [1 ]
Feng, Cai [4 ]
Li, Junhua [1 ]
Zaman, Qamar ur [1 ,5 ]
Kong, Yunxin [1 ]
Fahad, Shah [6 ]
Deng, Gang [1 ]
机构
[1] Yunnan Univ, Sch Agr, Kunming, Yunnan, Peoples R China
[2] Southwest United Grad Sch, Kunming, Peoples R China
[3] Yunnan Normal Univ, Yunnan Key Lab Potato Biol, Kunming, Yunnan, Peoples R China
[4] Yunnan Univ, Sch Ecol & Environm Sci, Kunming, Yunnan, Peoples R China
[5] Univ Lahore, Dept Environm Sci, Lahore, Pakistan
[6] Abdul Wali Khan Univ, Dept Agron, Mardan, Pakistan
基金
中国国家自然科学基金;
关键词
NITRATE REDUCTASE-ACTIVITY; GLUTAMINE-SYNTHETASE; SPROUT GROWTH; GENE; L; GLUTATHIONE; ACID; EXPRESSION; SUCROSE; PLANTS;
D O I
10.1111/ppl.70081
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Regulating potato tuber dormancy is crucial for crop productivity and food security. We conducted the first comprehensive physiological, transcriptomic, and metabolomic investigations of two varieties of long and short dormant potato tubers in order to clarify the mechanisms of dormancy release. In the current study, three different dormant stages of UGT (ungerminated tubers), MGT (minimally germinated tubers), and GT (germinated tubers) were obtained by treatment with the germination promoter gibberellin A3 and the germination inhibitor chlorpropham. The results revealed that the contents of reducing reducing sugar, sucrase, glutamine synthetase, and nitrate reductase were increased in the dormancy release stages, whereas the contents of sucrose and starch were decreased, leading to a change in the phenotype of the potato tuber bud eyes. According to transcriptomic and metabolomic investigations, four metabolomic pathways were impacted by the dormancy release process. Zeatin biosynthesis was identified in both potato varieties in the dormant release stage (trans-zeatin riboside, isopentenyl adenosine, 5 '-methylthioadenosine, IPT, CYP735A, CKX, and UGT73C); glutathione metabolism was identified in short-dormant potato varieties ((5-L-Glutamyl)-L-amino acid, oxidized glutathione, GPX, IDH1, GGT1_5, and GST); and the pentose phosphate pathway (D-Xylulose 5-phosphate, ribose 1-phosphate, PGD, and RPIA) and the phenylpropanoid biosynthesis (caffeic acid, sinapine, CYP98A, and CSE) were identified in long-dormant potato varieties. In conclusion, the four pathways mentioned above involve DEGs and DEMs that are crucial to the control of tuber dormancy release. This work offers a theoretical foundation and useful recommendations for potato tuber quality improvement and molecular breeding.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Integrated metabolomic and transcriptomic analyses reveal molecular response of anthocyanins biosynthesis in perilla to light intensity
    Xie, Guanwen
    Zou, Xiuzai
    Liang, Zishan
    Wu, Duan
    He, Jiankuang
    Xie, Kaicheng
    Jin, Honglei
    Wang, Hongbin
    Shen, Qi
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [42] Integrated metabolomic and transcriptomic analyses reveal different metabolite biosynthesis profiles of Juglans mandshurica in shade
    Zhang, Xinxin
    Li, Yuxi
    Yan, Huiling
    Cai, Kewei
    Li, Hanxi
    Wu, Zhiwei
    Wu, Jianguo
    Yang, Xiangdong
    Jiang, Haichen
    Wang, Qingcheng
    Qu, Guanzheng
    Zhao, Xiyang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [43] Integrated transcriptomic and metabolomic analyses reveal the molecular mechanism of flower color differentiation in Orychophragmus violaceus
    Shi, Yubin
    Wang, Zixuan
    Yan, Zhuangzhuang
    Liu, Jianfeng
    Zhang, Jun
    Liu, Guixia
    FRONTIERS IN PLANT SCIENCE, 2025, 16
  • [44] Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of apple dwarfing rootstock root morphogenesis under nitrogen and/or phosphorus deficient conditions
    Xie, Bin
    Chen, Yanhui
    Zhang, Yanzhen
    An, Xiuhong
    Li, Xin
    Yang, An
    Kang, Guodong
    Zhou, Jiangtao
    Cheng, Cungang
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [45] Transcriptomic and Metabolomic Analyses Reveal Response Mechanisms of Sinonovacula Constricta to Saline-Alkalinity Stresses
    Yang, Min
    Han, Yuting
    Chang, Yujie
    Li, Chengbo
    Niu, Donghong
    MARINE BIOTECHNOLOGY, 2025, 27 (02)
  • [46] Transcriptomic and metabolomic analyses reveal mechanisms underpinning resistance of Chinese wild grape to Colletotrichum viniferum
    Wang, Dan
    Jiang, Xiuli
    Zhang, Wenbin
    Cao, Dingding
    Ye, Guiping
    Chen, Jianjun
    Lei, Yan
    Wei, Xiangying
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 215
  • [47] Metabolomic and transcriptomic analyses reveal response mechanisms of juvenile flounder (Paralichthys olivaceus) to sublethal methylmercury
    Ren, Zhonghua
    Ning, Junhao
    Cao, Liang
    Liu, Jinhu
    Zhan, Junfei
    Wang, Zhikang
    Yu, Junbao
    Yang, Jisong
    Lv, Zhenbo
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [48] Transcriptomic and physiological analyses reveal the acquisition of somatic embryogenesis potential in Agapanthus praecox
    Yue, Jianhua
    Dong, Yan
    Du, Changmei
    Shi, Yabing
    Teng, Yun
    SCIENTIA HORTICULTURAE, 2022, 305
  • [49] Integrated transcriptomic and metabolomic analyses reveal potential regulatory pathways regulating bone metabolism pre- and postsexual maturity in hens
    Yue, Qiaoxian
    Huang, Chenxuan
    Zhou, Rongyan
    Zhang, Yinlang
    Wang, Dehe
    Zhang, Zhenhong
    Chen, Hui
    POULTRY SCIENCE, 2024, 103 (04)
  • [50] Integrated Metabolomic and Transcriptomic Analyses Reveal the Basis for Carotenoid Biosynthesis in Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots
    Ren, Qingming
    Zhen, Xiaoxi
    Gao, Huiyu
    Liang, Yinpei
    Li, Hongying
    Zhao, Juan
    Yin, Meiqiang
    Han, Yuanhuai
    Zhang, Bin
    METABOLITES, 2022, 12 (11)