A lactic acid dioxolane as a bio-based solvent for lithium-ion batteries: physicochemical and electrochemical investigations of lithium imide-based electrolytes

被引:0
|
作者
Melchiorre, Massimo [1 ,2 ]
Teoh, Khai Shin [3 ,4 ]
Urbano, Juan Luis Gomez [3 ,4 ]
Ruffo, Francesco [1 ,5 ]
Balducci, Andrea [3 ,4 ]
机构
[1] Univ Napoli Federico II, Complesso Univ Monte S Angelo, Dipartimento Sci Chim, Via Cintia 21, I-80126 Naples, Italy
[2] ISusChem Srl, Piazza Car 32, I-80134 Naples, Italy
[3] Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, Philosophenweg 7a, D-07743 Jena, Germany
[4] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, Philosophenweg 7a, D-07743 Jena, Germany
[5] Consorzio Interuniv Reatt Chim & Catalisi CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
关键词
STABILITY; WATER;
D O I
10.1039/d4gc05476h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study we report for the first time the application of an emerging bio-based solvent derived from lactic acid, namely 5-methyl-1,3-dioxolane-4-one (LA-H,H), as an electrolyte component for lithium-ion batteries (LIBs). Electrolyte formulations consisting of this novel bio-solvent and imide conducting salts (i.e. lithium bis(trifluoromethanesulfonyl)imide, LiTFSI, and lithium bis(fluorosulfonyl)imide, LiFSI) and the additive vinylene carbonate (VC) are prepared and thoroughly evaluated. Resulting formulations demonstrate suitable transport properties (e.g., conductivity, viscosity) and considerably low flammability compared to standard electrolyte formulations. The compatibility of the novel imide-based electrolytes with benchmark active materials such as graphite (GR) and lithium iron phosphate (LFP) are explored. The results indicate that the use of LA-H,H-LiTFSI 1 M 5 wt% VC allows high electrochemical performance in terms of rate-capability and cycling stability for both the graphite (339 mA h g-1 at 1C) and the LFP (100 mA h g-1 at 1C) electrodes. The suitability of this novel electrolyte configuration was further demonstrated through the assembly of a lab-scale full-cell LIB showing remarkable rate capability and cycling stability. These results indicate that LA-H,H can be used as an electrolyte component for LIBs, and pave the way for its use as bio-based solvent in energy storage systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Poly(ethylene oxide)-based electrolytes for lithium-ion batteries
    Xue, Zhigang
    He, Dan
    Xie, Xiaolin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) : 19218 - 19253
  • [22] Advanced Ether-Based Electrolytes for Lithium-ion Batteries
    Wang, Shizhu
    Shi, Jianyu
    Liu, Zhenhui
    Xia, Yongyao
    ADVANCED ENERGY MATERIALS, 2024, 14 (37)
  • [23] Liquid Electrolytes Based on Ionic Liquids for Lithium-Ion Batteries
    My Loan Phung Le
    Ngoc Anh Tran
    Hoang Phuong Khanh Ngo
    Truong Giang Nguyen
    Van Man Tran
    JOURNAL OF SOLUTION CHEMISTRY, 2015, 44 (12) : 2332 - 2343
  • [24] LiTDI and solvent mixture based electrolytes for lithium-ion cells
    Niedzicki, L.
    Brzozowski, B.
    Wieczorek, P.
    ELECTROCHIMICA ACTA, 2015, 174 : 625 - 629
  • [25] Development in the Ionic Liquid Based Electrolytes for Lithium-Ion Batteries
    Bolimowska, Ewelina
    Samaranayake, Lilantha
    Yahoui, Hamed
    Rouault, Helene
    Santini, Catherine C.
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2017, : 356 - 361
  • [26] POLYVINYLIDENE FLUORIDE BASED COMPOSITE ELECTROLYTES FOR LITHIUM-ION BATTERIES
    Ussipbekova, Yenlik Zh.
    Seilkhanova, Gulziya A.
    Kurbatov, Andrey P.
    Suleimenova, Gulnur A.
    JOURNAL OF CHEMISTRY AND TECHNOLOGIES, 2022, 30 (04): : 547 - 557
  • [27] Liquid Electrolytes Based on Ionic Liquids for Lithium-Ion Batteries
    My Loan Phung Le
    Ngoc Anh Tran
    Hoang Phuong Khanh Ngo
    Truong Giang Nguyen
    Van Man Tran
    Journal of Solution Chemistry, 2015, 44 : 2332 - 2343
  • [28] Iron fluoride-lithium metal batteries in bis(fluorosulfonyl)imide-based ionic liquid electrolytes
    Olbrich, Lorenz F.
    Xiao, Albert W.
    Schart, Maximilian
    Ihli, Johannes
    Matthews, Guillaume
    Sanghadasa, Mohan
    Pasta, Mauro
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (02):
  • [29] Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries
    Yu, Yang
    Lu, Fei
    Sun, Na
    Wu, Aoli
    Pan, Wei
    Zheng, Liqiang
    SOFT MATTER, 2018, 14 (30) : 6313 - 6319
  • [30] Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective
    Song, Ziyu
    Wang, Xingxing
    Wu, Hao
    Feng, Wenfang
    Nie, Jin
    Yu, Hailong
    Huang, Xuejie
    Armand, Michel
    Zhang, Heng
    Zhou, Zhibin
    JOURNAL OF POWER SOURCES ADVANCES, 2022, 14